Quantization for opaque predicate location On-going work

<u>A. Gonzalvez</u>¹ F. Dagnat² C. Fontaine³

¹Univ Rennes, CNRS, IRISA, Rennes, France

²IMT Atlantique, Lab-STICC, Brest, France

³Univ Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France

WG Formal Methods for Security, March 2023

Working Context

Working context (1/3)

Software protection type: opaque predicate

Attack software protection = location problem and deobfuscation problem

Working context (2/3)

Opaque predicates [CTL 98]

A predicate P is **opaque** if it has a property r which is known *a priori* to the obfuscator, but which is *difficult* for the deobfuscator to deduce.

Examples of opaque predicates

$$x * (x + 1) == 0 \mod 2$$
 (1)

$$x + y == (x \lor y) + 2 * (x \land y)$$
 (2)

Working context (3/3)

Working Context

Working context (3/3)

Hard problem: Automatic location of opaque predicate during symbolic reasoning

Working context (3/3)

Hard problem: Automatic location of opaque predicate during symbolic reasoning

State-of-the-art for *opaque predicate location*: defined **a priori** (heuristics, pattern-matching, algebraic methods, ...)

Working Context

Working context (3/3)

Hard problem: Automatic location of opaque predicate during symbolic reasoning

State-of-the-art for *opaque predicate location*: defined **a priori** (heuristics, pattern-matching, algebraic methods, ...)

The general case is not clearly covered! 😊

Working Context

Research question

How can we explicitly find the position of an opaque predicate in a binary?

SMT-solving: in one slide

$$\mathcal{T} ext{-solver}$$
 $\mathcal{S} ext{AT-solver}$

Transfers information back-and-forth between $\mathcal T\text{-solver}$ and SAT-solver

SMT-solving: in one slide

$$\mathcal{T} ext{-solver}$$
 $\mathcal{S} ext{AT-solver}$

Transfers information back-and-forth between \mathcal{T} -solver and *SAT*-solver

In practice

- accepts a query ϕ defined over a decidable theory ${\mathcal T}$
- runs an *effective interpretation*
- returns the status of φ (sat or unsat)
- returns optionally:
 - a model \mathcal{M} (when sat)
 - a proof \mathcal{P} (when unsat)

Symbolic machine and opaque predicate

Bit-level precision for symbolic reasoning

 \rightarrow Logic and fixed-size bitvectors (\mathcal{BV}) \rightarrow Stable formulas help to catch classes of stable theories and unstable theories Symbolic machine and opaque predicate

Bit-level precision for symbolic reasoning

\rightarrow Logic and fixed-size bitvectors (\mathcal{BV}) \rightarrow Stable formulas help to catch classes of stable theories and unstable theories

Model biinterpretable [M 13]

Two structures s.t.:

- each interpretable in the other
- the composition of the interpretations is definable

Example of model biinterpretables

Infinite finitely generated structures

The complexity of a Model: in one slide

The back-and-forth games

Player 1 (or **S**poiler) challenges by providing a side and an element c. Player 2 (or **D**uplicator) has to provide an element d on the other side that behaves similarly on the previous level. The number of possible *moves* is defined by an initial (countable) **ordinal** α . At each round, Player 1 picks an ordinal smaller than the previous one.

Begin:

With bit-level precision, φ : "if EXP: $x * (x + 1) == 0 \mod 2$ is always true ?" Events:

Effects:

Conclusion:

[¶]The finite cyclic group \mathbb{Z}_2 viewed as the multiplicative group of the ring $\mathbb{Z}/4\mathbb{Z}$. [†]The free group F_2 with the set of symbols $\{a, b\}$ and the set of reduced words in $\{a, a^{-1}, b, b^{-1}\}$. [‡]because *least support* of F_2 doesn't exist. [§][GN73][Morlay76][Millar78][G93]

Gonzalvez, Dagnat, Fontaine

Begin:

With bit-level precision, ϕ : "if EXP: $x * (x + 1) == 0 \mod 2$ is always true ?"

Events:

- Fresh variables: biinterpretables in \mathbb{Z}_2^{\P} and F_2^{\dagger}
- Z₂ interpretability: *Decidable*
- F2 interpretability: Computable but not Decidable ‡
- The model construction of EXP: an infinite finitely generated structure[§]

Effects:

Conclusion:

[¶]The finite cyclic group \mathbb{Z}_2 viewed as the multiplicative group of the ring $\mathbb{Z}/4\mathbb{Z}$. [†]The free group F_2 with the set of symbols $\{a, b\}$ and the set of reduced words in $\{a, a^{-1}, b, b^{-1}\}$. [‡]because *least support* of F_2 doesn't exist. [§][GN73][Morlay76][Millar78][G93]

Gonzalvez, Dagnat, Fontaine

Begin:

With bit-level precision, ϕ : "if EXP: $x * (x + 1) == 0 \mod 2$ is always true ?"

Events:

- Fresh variables: biinterpretables in \mathbb{Z}_2^{\P} and F_2^{\dagger}
- \mathbb{Z}_2 interpretability: Decidable
- F2 interpretability: Computable but not Decidable ‡
- The model construction of EXP: an infinite finitely generated structure[§]

Effects:

Depending on strategy:

- **UNSAT** with an *empty proof* (*e.g.* Boolector)
- or, infinite loop for model construction (e.g. Z3)

Conclusion:

[†]The free group F_2 with the set of symbols $\{a, b\}$ and the set of reduced words in $\{a, a^{-1}, b, b^{-1}\}$. [‡]because *least support* of F_2 doesn't exist.

[§][GN73][Morlay76][Millar78][G93]

The finite cyclic group \mathbb{Z}_2 viewed as the multiplicative group of the ring $\mathbb{Z}/4\mathbb{Z}$.

Begin:

With bit-level precision, φ : "if EXP: $x * (x+1) == 0 \mod 2$ is always true ?"

Events:

- Fresh variables: biinterpretables in \mathbb{Z}_2^{\P} and F_2^{\dagger}
- \mathbb{Z}_2 interpretability: *Decidable*
- F₂ interpretability: Computable but not Decidable [‡]
- The model construction of EXP: an infinite finitely generated structure[§]

Effects:

Depending on strategy:

- **UNSAT** with an *empty proof* (*e.g.* Boolector)
- or, infinite loop for model construction (e.g. Z3)

Conclusion:

EXP may be an opaque predicate.

[†]The free group F_2 with the set of symbols $\{a, b\}$ and the set of reduced words in $\{a, a^{-1}, b, b^{-1}\}$. [‡]because *least support* of *F*₂ doesn't exist.

[§][GN73][Morlay76][Millar78][G93]

[¶]The finite cyclic group \mathbb{Z}_2 viewed as the multiplicative group of the ring $\mathbb{Z}/4\mathbb{Z}$.

Asymptotic behavior of a model $\mathcal M$

General case: computation of the number of moves α is an **open problem**

	Polynomial	Spectral Gap	Intermediate	Exponential
Model behaviors	EI	×	El or UT	El or UT
Asymptotic limits	[1; <i>c^k</i> [×	$[2^{k^{1+\varepsilon}}; 2^{p(k)}]$	2 ^{<i>p</i>(<i>k</i>)}

EI: Effective interpretation; UT: Unstable theory; $c \in [1;2^{1/5}]$; k: swap number; p: polynomial of degree ≥ 2

Table: Asymptotic recovery measurements for homogeneous structures

	Polynomial	Spectral Gap	Intermediate	Exponential
Groups examples	FG, VNG	×	Grigorchuk	F ₂
Asymptotic limits	[1; <i>R^d</i> [×	[<i>v_{min}</i> ; exp(<i>R</i>)[exp(R)

FG: Finite groups; VNG: Virtual Nilpotent groups; Grigorchuk: Grigorchuk groups; F_2 : Free group F_2 ; $R \in \mathbb{N}$; $d \in \mathbb{N}$; v_{min} : $exp(R^{0.76...})$

Table: Asymptotic recovery measurements for groups structures

Symbolic machine and opaque predicate

Example with Z3 and EXP: $x * (x + 1) == 0 \mod 2$

Practical example

Time measurements of the computation each elementary equivalence of 4 consecutive propositional clauses, and compute the slope (*Effective growth rate*).

Example with Z3 and EXP: $x * (x + 1) == 0 \mod 2$

Practical example

Time measurements of the computation each elementary equivalence of 4 consecutive propositional clauses, and compute the slope (*Effective growth rate*). Max value measured (without unit): $16.7 \rightarrow Exponential behavior$

Example with Z3 and EXP: $x * (x + 1) = 0 \mod 2$

Practical example

Time measurements of the computation each elementary equivalence of 4 consecutive propositional clauses, and compute the slope (*Effective growth rate*). Max value measured (without unit): $16.7 \rightarrow Exponential behavior$

 \Rightarrow Potentially an opaque predicate

Research question

How can we explicitly find the position of an opaque predicate in a binary?

Research question

How can we explicitly find the position of an opaque predicate in a binary?

Answer: With a dynamic complexity assessments of each model and tracing instructions / SMT-query

Opaque predicate location: overview

Preliminary results

- Some asymptotic limits are known
- First manual measures done

On-going steps

- To get more realistic examples
- Automation of dynamic measurements
- Modification of DSE for location

Future steps

- Finer-grained measurements ideas
- To sort and to quantify possible ۲ opaque predicate behaviors over a theory

Conclusion

A research work at the intersection of many disciplines:

Program execution, Symbolic reasoning, Formal methods, Game theory, Model theory, Algebraic structures

Cat-and-Mouse game between obfuscator people and deobfuscator people.

Thank you for your attention !

Gonzalvez,	Dagnat,	Fontaine
------------	---------	----------