Expressing and verifying privacy properties with epistemic logic

Fortunat Rajaona and Ioana Boureanu

Surrey Centre for Cyber Security, University of Surrey, United Kingdom

the main advantage of modal logics of knowledge is that even fairly complex information hiding properties can be stated directly as formulas in the logic (Hughes and Shmatikov 2004)

epistemic logics are often better suited for expressing certain security properties such as secrecy and anonymity (Delaune et al. 2009)

Epistemic Logic: A Reminder

Semantics

 $(\mathcal{M}, w) \models K_i \varphi$ iff $w \sim_i w'$ implies $(\mathcal{M}, w') \models \varphi$

Epistemic Logic: A Reminder

Syntax $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_i \varphi$ Kripke Model $\mathcal{M} = (W, \sim_i, Val)$ W set of possible worlds $\sim_i \subseteq W \times W$ indistinguishability relations $Val : W \rightarrow \mathcal{P}(P)$ valuation function

Semantics

$$(\mathcal{M}, w) \models K_i \varphi \text{ iff } w \sim_i w' \text{ implies } (\mathcal{M}, w') \models \varphi$$

Example [Halpern and O'Neill 2003]

 $\begin{array}{ll} \theta(i, send(m)) \Rightarrow \neg K_j(\theta(i, send(m))) & j \text{ does not know that } i \text{ sent } m \\ \theta(i, send(m)) \Rightarrow \bigwedge_{k \neq j} \neg K_j(\neg \theta(k, send(m))) & j \text{ thinks any } k \neq j \text{ could have} \end{array}$

("Incomplete") Works on epistemic logic for privacy

[Halpern and O'Neill 2003] Expression of anonymity

[Tsukada et al. 2009] Expression of Anonymity, privacy, onymity, and identity

[Garcia et al. 2005] Expression of anonymity +Indistinguishability relations based on permutation equiv.

[Joinker and Pieters 2006] + Expression of receipt-freeness

[Baskar et al. 2007] Expression of vote privacy + Indistinguishability relations based on pattern matching

[Chadha et al. 2009] *Epistemic logic for the applied pi calculus* + Indistinguishability relations based on static equiv.

$$\label{eq:constraint} \begin{split} & [van \ \mbox{Eijck and } \ \mbox{Orzan } 2007] + \ \mbox{Tool-support} - \ \mbox{NO } \ \mbox{active attacker} + \ \mbox{NO } \ \mbox{Crypto} \\ & \ \mbox{Indistinguishability} \end{split}$$

[Boureanu et al 2009, 2010, 2012, 2016] +Tool-support – D-Y semantics "compiled" in the input to general-purpose model checkers

Need for tool support for verifying finer privacy specifications

There are tools for verifying privacy (not expressed in epistemic logic): DEEPSEC, AKISS, diff-equivalence in Tamarin, ProVerif BUT.....

There are tools for verifying privacy (not expressed in epistemic logic): DEEPSEC, AKISS, diff-equivalence in Tamarin, ProVerif

BUT..... Consider the "Private Authentication" Protocol [Abadi & Fournet 2004]

- S_X is a list of the public keys of X's preferred interlocutors - Take goal 3 of this protocol, privacy of S_A : "Although an individual principal may deduce whether it is in S_A from A's willingness to communicate, A should not have to reveal anything more about S_A ".

This goal is an example of privacy finesse that is not captured by any aforesaid tools!

Our Work (under submission)

- a new epistemic logic that is expressive enough for privacy notions desired by the community
- a new protocol model, with an active (Dolev-Yao) attacker, to interpret this new logic
- with cryptographic indistinguishability
- an automated verification tool

states == set of messages (as terms) + frame (in the applied-pi sense)

An agent stores in its state

- the messages = { "*Hello*",alice}_{pubk(bob)}
- the frame { "*Hello*", sender}_{pubk(recipient)} →■
- extend Dolev-Yao deduction from messages to frames, but not just for message-deduction but also "linkability" reasoning
- build cryptographic indistinguishability over agent's states based on pattern-matching over set of messages and over frames

Our Logics

Syntax

$$\begin{split} \varphi ::= has_u(\theta) \mid link_u(\tau,\theta) \mid \theta \! \in \! S_u \mid K_u \varphi \mid \neg \varphi \mid \varphi \! \land \varphi \\ \mid \forall x \! : \! \mathsf{D}_X \! \cdot \varphi \mid \forall x \! : \! Ag \! \cdot \varphi \end{split}$$

Semantics

- standard for epistemic logic
- based primarily on crypto-based indistinguishability

– the \underline{lift} is via privacy reasoning: see e.g., "link" and that \sim is over states (i.e., entire frames)

1.
$$(M, s) \models_{\alpha} \neg \Phi$$
 iff $(M, s) \nvDash_{\alpha} \Phi$
2. $(M, s) \models_{\alpha} \Phi \land \Psi$ iff $(M, s) \models_{\alpha} \Phi$ and $(M, s) \models_{\alpha} \Psi$
3. $(M, s) \models_{\alpha} has_{u}(\theta)$ iff $V^{\alpha}(\theta) \in terms(s_{V^{\alpha}(u)})$
4. $(M, s) \models_{\alpha} \theta \in S_{u}$ iff $V^{\alpha}(\theta) \in S_{V^{\alpha}(u)}$
5. $(M, s) \models_{\alpha} link_{u}(d, \theta)$ iff $(d \mapsto V^{\alpha}(\theta)) \in frame(s_{V^{\alpha}(u)})$
6. $(M, s) \models_{\alpha} K_{u}\varphi$ iff for all $s' \in W$ such that $s' \sim_{V^{\alpha}(u)} s$,
 $(M, s') \models_{\alpha} \varphi$
7. $(M, s) \models_{\alpha} \forall x : D_{X} \cdot \varphi$ iff $(M, s) \models_{\alpha \cup \{x \mapsto a\}} \varphi$ for all $t \in D_{X}$
8. $(M, s) \models_{\alpha} \forall x : Ag \cdot \varphi$ iff $(M, s) \models_{\alpha \cup \{x \mapsto ag\}} \varphi$

8/13

$$\neg(\exists x \exists a \cdot K_{I}(plays_{x}(A) \land named_{x}(a)))$$

$$\neg(\exists a \cdot K_{I}(\exists x \cdot plays_{x}(A) \land named_{x}(a)))$$

$$\neg K_{I}(\exists x_{1}, x_{2} \exists a \cdot \bigwedge_{i \in \{1,2\}} (plays_{x_{i}}(A) \land named_{x_{i}}(a)))$$

$$\neg \exists x_{1}, x_{2}K_{I}(\exists a \cdot \bigwedge_{i \in \{1,2\}} (plays_{x_{i}}(A) \land named_{x_{i}}(a)))$$

$$\forall x \forall a \forall b \cdot (\neg named_{x}(b) \land \neg named_{x}(a) \Rightarrow \neg K_{x}(pubk(a) \notin S_{b}))$$

$$\begin{array}{l} \neg(\exists x \exists a \cdot K_{I}(plays_{x}(A) \land named_{x}(a))) & (Anonymity 1) \\ \neg(\exists a \cdot K_{I}(\exists x \cdot plays_{x}(A) \land named_{x}(a))) & (Anonymity 2) \\ \neg K_{I}(\exists x_{1}, x_{2} \exists a \cdot \bigwedge_{i \in \{1,2\}} (plays_{x_{i}}(A) \land named_{x_{i}}(a))) & (Strong Unlink) \\ \neg \exists x_{1}, x_{2}K_{I}(\exists a \cdot \bigwedge_{i \in \{1,2\}} (plays_{x_{i}}(A) \land named_{x_{i}}(a))) & (Weak Unlink) \\ \forall x \forall a \forall b \cdot (\neg named_{x}(b) \land \neg named_{x}(a) \Rightarrow \neg K_{x}(pubk(a) \notin S_{b})) \\ (Privacy of interlocutors) \end{array}$$

Our Model Checker for Privacy: Phoebe

- We built a proof-of-concept model checker for our logic and semantics, called Phoebe
- It generates a model for a bounded number of sessions of a protocol, and model-checks epistemic formulae of the kind shown

Protocol	Formula	$\#n_{sess}$	Domains	Time	Result
PrivAuth	Goal 3 Privacy of whitelists (who's in)	1	$D_{\mathcal{A}} = [a,b]$	46s	no attack
	Goal 3' Privacy of whitelists (who's not in)	1	$D_{\mathcal{A}} = [a,b]$	34s	no attack
	Goal 2A (Minimal) Anonymity of Initiator A	1	$D_{\mathcal{A}}=[a,b]$	109s	no attack
	Goal 2A' (Total) Anonymity of Initiator A (vs Intruder) 1		$D_{\mathcal{A}} = [a, b]$	13s	no attack
	Goal 2C (Minimal) Anonymity of Responder C 1 D _A =		$D_{\mathcal{A}} = [a,b]$	99s	no attack
	Goal 2C' (Total) Anonymity of Responder C (vs Intruder)	1	$D_{\mathcal{A}} = [a, b]$	7.7s	no attack
	all goals	2	$D_{\mathcal{A}} = [a,b]$	time-out (>10h)	unknown
	all goals	1	$D_{\mathcal{A}} = [a,b,c]$	time-out (>10h)	unknown
PrivAuthX	Goal 3 Privacy of whitelists (who's in)	1	$D_{\mathcal{A}}=[a,b]$	0.8s	attack
(PrivAuth w/o decoy	Goal 3' Privacy of whitelists (who's not in)	1	$D_{\mathcal{A}} = [a,b]$	1.44s	no attack
messages)	Goal 2A (Minimal) Anonymity of Initiator A	1	$D_{\mathcal{A}} = [a,b]$	2.56s	no attack
	Goal 2A' (Total) Anonymity of Initiator A (vs Intruder)	1	$D_{\mathcal{A}} = [a, b]$	0.67s	no attack
	Goal 2C (Minimal) Anonymity of Responder C		$D_{\mathcal{A}} = [a,b]$	2.16s	attack
	Goal 2C' (Total) Anonymity of Responder C (vs Intruder)	1	$D_{\mathcal{A}} = [a, b]$	0.63s	attack
		1	$D_{\mathcal{A}}=[a,b,c]$	5.38s	attack
BasicHash	Strong Unlinkability by name	3	$D_{\mathcal{A}}=[t1,t2,r1] (\#n_{sess} > \#tag_names)$	1.46s	attack
	Strong Unlinkability by name	3	$D_{A} = [t_1, t_2, t_3, r_1]$	90s	no attack
TagReader0	Weak Unlinkability by key	2	$D_{\mathcal{A}} = [t1, t2, r1], D_{\mathcal{K}} = [k1, k2]$	370s	attack
-	Weak Unlinkability by name	2	$D_{\mathcal{A}} = [t1, t2, r1], D_{\mathcal{K}} = [k1, k2]$	3h34m	no attack
	Weak Unlinkability by name	3	$D_{\mathcal{A}} = [t1, t2, r1], D_{\mathcal{K}} = [k1, k2]$	time-out (>10h)	unknown
LoRaWANJoin	Unlinkabity of DevEUI (via DevAddr)	1	D _A =[d1,d2,s1]	0.39s	attack

Property	Tamarin +diff-equiv.	Proverif +diff-equiv.	DEEPSEC [2]	Phoebe
Minimal Anonymity Total Anonymity	✓ ?	✓ ?	✓ ?	\checkmark
Strong Unlinkability Weak Unlinkability	O.A. [14] N/A	O.A. [5] N/A	e.g. [40] N/A	\checkmark
Strong Unlinkability by key Strong Unlinkability	?	O.A. [5]	?	\checkmark
for stateful protocols	O.A. [14]	N/A	Р.	N/A
Privacy of interlocutors	N/A	N/A	N/A	\checkmark

- Formally characterise applied-pi restricted forms of trace equivalences via a set of epistemic formulae
- Improve our tool (e.g., on-the-fly model checking, or, narrow down the logic to fragments to which, e.g., predicate-based or agent-based abstraction, are suited)
- More case studies

Thank you!