
Security Going Live: Verification of Real-
Time Components of Security Protocols

Pedro Moreno-Sanchez1, Itsaka Rakotonirina2, Clara Schneidewind2

Work in progress with

1 IMDEA Software Institute
2 MPI-SP

1

1

Sensitive data

1

!
Compromised network

Sensitive data

1

!
Compromised network

Sensitive data

!
Dishonest agents

1

!
Compromised network

Sensitive data

!
Dishonest agents

Fairness: can one stall the protocol after having gained an “advantage”?

2

Theorem

Asynchronous communications are unfair.

R. Cleve, 1986. Limits on the security of coin flips when half the processors are faulty
S. Even, Y. Yacobi, 1980. Relations among public key signature system

2

Theorem

Asynchronous communications are unfair.

Example: asynchronous coin swapping

R. Cleve, 1986. Limits on the security of coin flips when half the processors are faulty
S. Even, Y. Yacobi, 1980. Relations among public key signature system

€ $

2

Theorem

Asynchronous communications are unfair.

Example: asynchronous coin swapping

R. Cleve, 1986. Limits on the security of coin flips when half the processors are faulty
S. Even, Y. Yacobi, 1980. Relations among public key signature system

€ $

2

Theorem

Asynchronous communications are unfair.

Example: asynchronous coin swapping

R. Cleve, 1986. Limits on the security of coin flips when half the processors are faulty
S. Even, Y. Yacobi, 1980. Relations among public key signature system

€ $!"

Practical solutions 3

A B

€ $

Practical solutions 3

Deposit Deposit

A B
Joint account

€ $

Joint account

Practical solutions 3

Deposit Deposit

Claim ClaimA B
Joint account

€ $

Joint account

Practical solutions 3

Deposit Deposit

Claim ClaimA B
Joint account

Refund Refund

€ $

Joint account

Practical solutions 3

Deposit Deposit

Claim

Claim

A B
Joint account

Refund Refund

€ $

Joint account

Cryptographic dependency

Practical solutions 3

Deposit Deposit

Claim

Claim

A B
Joint account

Refund Refund

€ $

Joint account

Cryptographic dependency

Practical solutions 3

Deposit Deposit

ClaimA B

Joint account€ $Joint account

Blockchain(s): trusted public ledger(s) publishing transactions regularlyi

Claim

Refund Refund

Cryptographic dependency

Practical solutions 3

Deposit Deposit

ClaimA B

Joint account€ $Joint account

Blockchain(s): trusted public ledger(s) publishing transactions regularlyi

Time lock: lower bound on the publication time of a transactioni

Claim

Refund Refund

Cryptographic dependency

Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic
interactions with a third party

Intricate real-time mechanisms

Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic
interactions with a third party

Intricate real-time mechanisms

Good support fro
m

existing verification

techniques

Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic
interactions with a third party

Intricate real-time mechanisms

Good support fro
m

existing verification

techniques

Specifying real-time protocols

Planned features 5

Planned features 5

record types

Planned features 5

record types

fixed-size array?
reduction to the binary case?

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform
some action or not has consequences

Option 1:
Wait for a transaction

until time t

Option 2:
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform
some action or not has consequences

Option 1:
Wait for a transaction

until time t

Option 2:
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform
some action or not has consequences

Progress: one option should be chosen, if possible

Option 1:
Wait for a transaction

until time t

Option 2:
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform
some action or not has consequences

Progress: one option should be chosen, if possible

Atomicity: certain operations should be done “simultaneously”

Option 1:
Wait for a transaction

until time t

Option 2:
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform
some action or not has consequences

Progress: one option should be chosen, if possible

Atomicity: certain operations should be done “simultaneously”

#

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.
why “:”

and not “;”

???

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.

Time management

why “:”

and not “;”

???

Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.

Time management

???
why “:”

and not “;”

???

Atomicity 8

instr ; P = instr : tic : P

Atomicity 8

in(x) : Get(x) : @t’ : when t’ < t : tic : Ans(u) : out(u) : tic : Ptic tic

instr ; P = instr : tic : P

Atomicity 8

in(x) : Get(x) : @t’ : when t’ < t : tic : Ans(u) : out(u) : tic : Ptic tic

instruction 1 instruction 2

instr ; P = instr : tic : P

Planned features (again) 9

record types

fixed-size array?
reduction to the binary case?

Planned features (again) 9

record types

fixed-size array?
reduction to the binary case?

Specifying temporal properties

Security properties: tidy CTL* 10

G. Barthe, U. Dal Lago, G. Malavolta, I. Rakotonirina, 2022.
Tidy: symbolic verification of timed cryptographic protocols

Security properties: tidy CTL* 10

axiomatisation of a
blockchain with time locks

G. Barthe, U. Dal Lago, G. Malavolta, I. Rakotonirina, 2022.
Tidy: symbolic verification of timed cryptographic protocols

Security properties: tidy CTL* 10

G(∀ tx. Publish(tx) ⇒ F doubleSpend(tx) ⇒ ⊥)

“at any point
in the future”

“at some point
in the future”

“at some point in at most
timeLock(tx) units of time”

∀ tx. FtimeLock(tx) Publish(tx) ⇒ ⊥
axiomatisation of a

blockchain with time locks

G. Barthe, U. Dal Lago, G. Malavolta, I. Rakotonirina, 2022.
Tidy: symbolic verification of timed cryptographic protocols

Examples:

Verifying real-time protocols?
(work in progress)

Verification chain 11

Calculus of concurrent processes

Proof Attack/

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Sapic

Proof Attack/

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

+ atomicity
+ real-time

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

approximate untimed model

+ atomicity
+ real-time

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

approximate untimed model

+ atomicity
+ real-time

Verification chain 11

Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

refinement if
unsound attack

approximate untimed model

+ atomicity
+ real-time

 Typical unsound attacks 12

Claim

Claim

A B

Refund Refund

 Typical unsound attacks 12

Claim

Claim

A B

Refund Refund

Submit (ClaimA); Submit (RefundA); Publish (ClaimA); Publish (RefundA)Submit Submit Publish Publish

 Typical unsound attacks 12

Claim

Claim

A B

Refund Refund

Submit (ClaimA); Submit (RefundA); Publish (ClaimA); Publish (RefundA)Submit Submit Publish Publish
A’s Refund timelock

 Typical unsound attacks 12

Claim

Claim

A B

Refund Refund

Submit (ClaimA); Submit (RefundA); Publish (ClaimA); Publish (RefundA)Submit Submit Publish Publish

Submit (ClaimA); Publish (ClaimA); Submit (RefundA); Publish (RefundA)Submit SubmitPublish Publish

A’s Refund timelock

 Typical unsound attacks 12

Claim

Claim

A B

Refund Refund

Submit (ClaimA); Submit (RefundA); Publish (ClaimA); Publish (RefundA)Submit Submit Publish Publish

Submit (ClaimA); Publish (ClaimA); Submit (RefundA); Publish (RefundA)Submit SubmitPublish Publish

A’s Refund timelock

B’s fast reactiveness

Conclusion 13

A calculus supporting real time and atomicity

Formalisation of a Blockchain with time locks

In progress: extending/adapt Sapic to fit the workflow

