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Fairness: can one stall the protocol after having gained an “advantage”?
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Deposit Deposit

ClaimA B

Joint account€ $Joint account

Blockchain(s): trusted public ledger(s) publishing transactions regularlyi

Time lock: lower bound on the publication time of a transactioni

Claim

Refund Refund

Cryptographic dependency



Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic  
interactions with a third party

Intricate real-time mechanisms



Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic  
interactions with a third party

Intricate real-time mechanisms

Good support fro
m 

existing verification  

techniques



Takeaway message 4

Enforcing fairness often requires:

Complex cryptographic  
interactions with a third party

Intricate real-time mechanisms

Good support fro
m 

existing verification  

techniques



Specifying real-time protocols



Planned features 5



Planned features 5

record types



Planned features 5

record types

fixed-size array?  
reduction to the binary case?



Be careful of standard frameworks! 6

When modelling fairness, the ability to perform  
some action or not has consequences



Option 1: 
Wait for a transaction 

until time t

Option 2: 
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform  
some action or not has consequences



Option 1: 
Wait for a transaction 

until time t

Option 2: 
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform  
some action or not has consequences

Progress: one option should be chosen, if possible



Option 1: 
Wait for a transaction 

until time t

Option 2: 
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform  
some action or not has consequences

Progress: one option should be chosen, if possible

Atomicity: certain operations should be done “simultaneously”



Option 1: 
Wait for a transaction 

until time t

Option 2: 
Fallback solution

Be careful of standard frameworks! 6

When modelling fairness, the ability to perform  
some action or not has consequences

Progress: one option should be chosen, if possible

Atomicity: certain operations should be done “simultaneously”

#



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.
why  “:”  

and not  “;”  

???



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.

Time management

why  “:”  

and not  “;”  

???



Process syntax 7

P | Q ! P P + Q

Parallel Choice

0

tic : P in(x) : Pout(u) : P Ev(ũ) : P

@ t : P when b : P

Replication nil

tic output input event

time stamp time condition

Structural operators

Communications Security prop.

Time management

???
why  “:”  

and not  “;”  

???



Atomicity 8

instr ; P  =  instr : tic : P



Atomicity 8

in(x) : Get(x) : @t’ : when t’ < t : tic : Ans(u) : out(u) : tic : Ptic tic

instr ; P  =  instr : tic : P



Atomicity 8
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G(∀ tx. Publish(tx) ⇒ F doubleSpend(tx) ⇒ ⊥)

“at any point  
in the future”

“at some point 
in the future”

“at some point in at most 
timeLock(tx) units of time”

∀ tx. FtimeLock(tx) Publish(tx) ⇒ ⊥
axiomatisation of a 

blockchain with time locks

G. Barthe, U. Dal Lago, G. Malavolta, I. Rakotonirina, 2022.  
Tidy: symbolic verification of timed cryptographic protocols

Examples:



Verifying real-time protocols?
(work in progress)
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Calculus of concurrent processes

Multiset rewrite rules

Tamarin prover

Sapic

Proof Attack/

refinement if 
unsound attack

approximate untimed model

+ atomicity
+ real-time
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Submit (ClaimA); Publish (ClaimA); Submit (RefundA); Publish (RefundA)Submit SubmitPublish Publish

A’s Refund timelock

B’s fast reactiveness
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A calculus supporting real time and atomicity

Formalisation of a Blockchain with time locks

In progress: extending/adapt Sapic to fit the workflow


