
1/27

Context Constant time operations Cache protection Improvement to Lock

Constant Time Security at a Low Cost for Embedded Systems
Through Hardware/Software Cooperation

Jean-Loup Hatchikian-Houdot

Epicure Team, Inria
Supervised by Frédéric Besson, Guillaume Hiet, Pierre Wilke

In collaboration with Nicolas Gaudin, Pascal Cotret, Guy Gogniat, Vianney Lapôtre

March 27, 2023

2/27

Context Constant time operations Cache protection Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

3/27

Context Constant time operations Cache protection Improvement to Lock

Embedded systems and Internet-of-Things (IoT)

• Used in a lot of devices (industrial,
medical, etc.)

→ Must be tiny, cheap, and have low
power consumption

→ Can handle sensitive data

• Often have internet access
(Software updates, cloud access,
remote control, etc.)

→ Attackers can force their own code
to execute on those device to steal
data to victim process

4/27

Context Constant time operations Cache protection Improvement to Lock

Use case : IoT

Cheap embedded system with low power consumption :
• No speculation
• In-Order
• Mono-threading:

5/27

Context Constant time operations Cache protection Improvement to Lock

Definition : Timing leakage & Constant Time Security
Program leaking the value of a secret:

The attacker can observe leakages if its code run on the same hardware and
can measure execution time:

Constant Time Security (CTS):
→ No secrets exposed through timing leakage

6/27

Context Constant time operations Cache protection Improvement to Lock

Causes of leakages

• Computations time depending on operands
e.g.: res ← div(x , y) [log2(y)]

• Memory accesses
e.g.: res ← load(address) [cache_line(address)]

• Conditional jumps (future work)
e.g.: if (condition) [condition]

7/27

Context Constant time operations Cache protection Improvement to Lock

Software only Countermeasure

Constant time programming (Timing does no depends on secrets)
• Restrict the programmer

→ E.g., no memory access on a secret address.
• Could rely on undefined micro-architectural behaviors

→ E.g., multiplication is not CTS on every processor.

8/27

Context Constant time operations Cache protection Improvement to Lock

Hardware only Countermeasure

E.g., Cache partitioning
• Cannot tell apart secret from public data

→ Unnecessary high cost when handling public data

9/27

Context Constant time operations Cache protection Improvement to Lock

Proposal: Cooperation between Hardware and Software

New instructions in the ISA
• Software and Hardware can communicate about security

→ The software can use costly security only when needed

• Timing behavior specification
→ Security guaranties against timing attacks

10/27

Context Constant time operations Cache protection Improvement to Lock

Requirement and Hypothesis

Requirements:
• The software developer does not need to know the hardware implementation
• Secrets defined by the source code
• No timing leakages on secrets
• Security cost must be kept low regarding execution time, memory usage and

hardware requirements

Hypothesis:
• The source code, compiler and hardware will comply to the ISA specification
• The attacker does not have physical access to the hardware

11/27

Context Constant time operations Cache protection Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

12/27

Context Constant time operations Cache protection Improvement to Lock

Safe Operations

Some operations have huge timing variations caused by optimizations

13/27

Context Constant time operations Cache protection Improvement to Lock

Timing behavior of operations

Some operations have huge timing variations caused by optimizations

We can define a safe version of them for constant time mode.

14/27

Context Constant time operations Cache protection Improvement to Lock

Constant time mode

Code in pseudo-assembly

x1 ← add(x2, x3)
x1 ← div(x2, x3)
begin constant time mode
x1 ← add(x2, x3)
x1 ← div(x2, x3)
end constant time mode

Leakage

[•]
[log2(x3)]
[•]
[•]
[•] (performance loss)
[•]

15/27

Context Constant time operations Cache protection Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 111 x x

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 111 x x

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 111 x x

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 111 x x

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 111 x x

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

Cache miss!

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(00110): 001 1 0

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

Load from RAM (slow)

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(00111): 001 1 1

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(00111): 001 1 1

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(00111): 001 1 1

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

Cache hit!

16/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(00111): 001 1 1

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

Load from cache (fast)

17/27

Context Constant time operations Cache protection Improvement to Lock

Cache: direct mapping - eviction

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

load(***1*): *** 1 *

b1∼3 b4 b5

Tag Line Word

RAM Direct mapped cache

Several addresses mapped to the same line

18/27

Context Constant time operations Cache protection Improvement to Lock

Cache attack

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 111 x x

Line 1 001 g h

RAM Direct mapped cache
A
tt

ac
ke

r
|

V
ic

ti
m

18/27

Context Constant time operations Cache protection Improvement to Lock

Cache attack

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 001 e f

Line 1 001 g h

RAM Direct mapped cache

The attacker fill the cache with its data

A
tt

ac
ke

r
|

V
ic

ti
m

18/27

Context Constant time operations Cache protection Improvement to Lock

Cache attack

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 000 a b

Line 1 001 g h

RAM Direct mapped cache

The victim try to secretly
load the word at 00001

A
tt

ac
ke

r
|

V
ic

ti
m

18/27

Context Constant time operations Cache protection Improvement to Lock

Cache attack

Address Value
00000 a

00001 b
00010 c

00011 d
00100 e

00101 f
00110 g

00111 h
... ...

Line id Tag Word 0 Word 1

Line 0 001 e f

Line 1 001 g h

RAM Direct mapped cache

The attacker now probe the cache
This expose which cache line the victim altered

The attacker deduces that the victim
either did load(00000) or load(00001)A

tt
ac

ke
r

|
V
ic

ti
m Cache miss!

Cache hit

19/27

Context Constant time operations Cache protection Improvement to Lock

What we want to protect

We want to be able to do
secret memory accesses
(i.e. to not leak at which
index we access an array)

20/27

Context Constant time operations Cache protection Improvement to Lock

Solution : Lock line in cache

Process P1:
Lock_Cache(00001)
Lock_Cache(00010)
res ← load(00001)
Unlock_Cache(00001)
Unlock_Cache(00010)

Line id Lock Tag Word 0 Word 1

Line 0 P1 000 a b

Line 1 P1 000 c d

Direct mapped cache

Attacker can no longer tamper with lines 0 and 1

Partionned Lock cache (PLcache) proposed by Zhenghong Wang and Ruby B. Lee in
2007

21/27

Context Constant time operations Cache protection Improvement to Lock

Example on the S-box of AES

Constant time AES with lookup tables (S-box) !

22/27

Context Constant time operations Cache protection Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

23/27

Context Constant time operations Cache protection Improvement to Lock

Issues of PLcache and proposition

• Memory access on locked lines still alter cache state (LRU policy)
• The victim can accidentally unlock it’s own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.

24/27

Context Constant time operations Cache protection Improvement to Lock

Issues of PLcache and proposition

• Memory access on locked lines still alter cache state (LRU policy)
• The victim can accidentally unlock it’s own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.
We propose the following properties as requirement of any lock implementation :

• Memory access on a locked line cannot alter the cache in an observable manner
• Locked line can only be unlocked explicitly (with the unlock instruction)

25/27

Context Constant time operations Cache protection Improvement to Lock

Simulation on Camellia encryption : Vulnerable S-box

	0

	20

	40

	60

	80

	100

	120

	0 	500 	1000 	1500 	2000 	2500 	3000

A
c
c
e
s
s
e
d
	c
a
c
h
e
	s
e
t

Time	(in	amount	of	executed	instructions)

input	1 input	2

26/27

Context Constant time operations Cache protection Improvement to Lock

Simulation on Camellia encryption : Protected S-box

	0

	20

	40

	60

	80

	100

	120

	0 	500 	1000 	1500 	2000 	2500 	3000

A
c
c
e
s
s
e
d
	c
a
c
h
e
	s
e
t

Time	(in	amount	of	executed	instructions)

memory	access	for	input	1
memory	access	for	input	2

lock	for	input	1
lock	for	input	2

27/27

Context Constant time operations Cache protection Improvement to Lock

Perspectives

Priorities:
• Formal proof of the security guarantees
• Performance evaluations

Next perspectives:
• Generalize the lock on multi-level caches
• Protection on branching (branch balancing + instruction cache protection)
• Additional protections for a alternative trade-off between spend cache space and

execution time

	Context
	Constant time operations
	Cache protection
	Improvement to Lock

