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Embedded systems and Internet-of-Things (loT)

e Used in a lot of devices (industrial,
medical, etc.)

— Must be tiny, cheap, and have low
power consumption

— Can handle sensitive data

e Often have internet access
(Software updates, cloud access,
remote control, etc.)

— Attackers can force their own code
to execute on those device to steal
data to victim process
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Use case : loT

Cheap embedded system with low power consumption :

e No speculation
e In-Order
e Mono-threading:

Process 1

Context
Switch

| Process 2

Context
Switch

| Process 3

Context
Switch

Process 1
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Definition : Timing leakage & Constant Time Security
Program leaking the value of a secret:

Behavior 1

Behavior 2

t'Z t.l

The attacker can observe leakages if its code run on the same hardware and
can measure execution time:

@ Context Victim Context @
|—| Switch Switch |—|
Attacker Attacker

Constant Time Security (CTS):
— No secrets exposed through timing leakage
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Causes of leakages

e Computations time depending on operands

8- res « div(x, y) [log2(y)]
e Memory accesses

.8 res <+ load(address) [cache line(address)]
e Conditional jumps (future work)

€8 if (condition) [condition]
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Software only Countermeasure

Source

SR NETCT I Transformed by

[g=EEEHM 2 compiler into
else
res=b;

Software side

Constant time programming (Timing does no depends on secrets)
e Restrict the programmer
— E.g., no memory access on a secret address.
e Could rely on undefined micro-architectural behaviors

— E.g., multiplication is not CTS on every processor.
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Hardware only Countermeasure

CPU

L J

Hardware side

E.g., Cache partitioning
e Cannot tell apart secret from public data

— Unnecessary high cost when handling public data
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Proposal: Cooperation between Hardware and Software

Source

SR NETCT I Transformed by Expressed in

[g=EEEH o compiler into the ISA of the
else
res=b;

Scope of this thesis

New instructions in the ISA
e Software and Hardware can communicate about security

— The software can use costly security only when needed

e Timing behavior specification

— Security guaranties against timing attacks
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Requirement and Hypothesis

Requirements:

e The software developer does not need to know the hardware implementation

Secrets defined by the source code

No timing leakages on secrets

Security cost must be kept low regarding execution time, memory usage and
hardware requirements

Hypothesis:
e The source code, compiler and hardware will comply to the ISA specification

e The attacker does not have physical access to the hardware
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Safe Operations

Some operations have huge timing variations caused by optimizations

Optimized Operation : Try to finish as fast as possible
Unknow execution time - Could leak information

Improvement to Lock
000000
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Timing behavior of operations

Some operations have huge timing variations caused by optimizations

Optimized Operation : Try to finish as fast as possible
Unknow execution time — Could leak information

Safe Operation : Constant execution time » No leaks

Will use Worst Case Execution Time (WCET) » Slower

We can define a safe version of them for constant time mode.

Improvement to Lock
000000
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Constant time mode

Code in pseudo-assembly

x1 + add(x2, x3)

X1 < div(Xg,X3)

begin constant time mode
X1 < add(Xg,X3)

x1 + div(x2, x3)

end constant time mode

Leakage

[]

[log2(x3)]

[¢]

[¢]

[¢] (performance loss)

[¢]
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RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0®00000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

bi~3 bs  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
00®0000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 bs  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0008000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 by  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0000800000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 bs  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0000080000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X
Line 1 111 X X
Cache miss!

load(00110): 001 1 O
bi~3 bs  bs
Tag Line Word
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Cache: direct mapping

RAM Direct mapped cache

Address  Value Line id Tag Word 0 Word 1
a

00000 Line 0 111 X X
00001 b
00010 < Linel 001 g h
00011 d
00100 e Load from RAM (slow)
00101 f
00110 g load(00110): 001 1 0
00111 h bi~3z ba bs

Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000@00000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 001 g h

load(00111): 001 1 1
bi~3 bs  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000080000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 001 g h

load(00111): 001 1 1
bi~3 by  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000008000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X
Line 1 001 g h
Cache hit!

load(00111): 001 1 1
bi~3 bs  bs
Tag Line Word



RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000000800000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0  Word 1

Line 0 111 X X

Line 1 001 g h

Load from cache (fast)

load(00111): 001 1 1
bi~3 bs  bs
Tag Line Word
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Cache: direct mapping - eviction

RAM Direct mapped cache
Address  Value Line id Tag Word 0 Word 1
00000 ° Line 0 111 X X
00001 b
00010 < Linel 001 g h
00011 d
00100 € Several addresses mapped to the same line
00101 f
00110 g 1%): 1
00111 h bi~3z ba bs

Tag Line Word

Context Constant time operations Cache protection Improvement to Lock



RAM
Address

Value

00000

00001

00010

00011

00100

00101

00110

00111

oS|I+~ |0 |T

Cache protection
0000000000008000000

Cache attack

Direct mapped cache

Line id Tag Word 0 Word 1

Line O 111 X X

Line 1 001 g h




Attacker

RAM
Address

Value

00000

a

Cache protection
0000000000000e00000

Cache attack

Direct mapped cache

Line id Tag Word 0 Word 1

00001

00010

Line 0 001 e f

00011

Line 1 001 g h

00100

00101

00110

00111

oS|I+~ |0 |T

The attacker fill the cache with its data
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Cache attack
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RAM Direct mapped cache
Address Value Line id Tag Word 0 Word 1
00000 a
Line O 000 a b
£ 00001 b — "
=
> 00010 < Line 1 001 g h
00011 d
00100 © The victim try to secretly
00101 f load the word at 00001
00110 g
00111 h
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Cache attack

RAM Direct mapped cache
Address  Value Line id Tag Word 0 Word 1
00000 a
Line 0 001 . e f
00001 b Cache miss!
C
00010 Line 1 001 g h
00011 d
. 00100 € The attacker now probe the cache
9 00101 f This expose which cache line the victim altered
§ 00110 g The attacker deduces that the victim
& 00111 h either did load(00000) or load(00001)
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What we want to protect

We want to be able to do Publlc source code
secret memory accesses

(i.e. to not leak at which

. int X = secretTab[secretIndex];
index we access an array)

-
Valg

Range of valy

addresses of 4 vala <3:15ecret1ndex
secretTab

valp

\
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Solution : Lock line in cache

Direct mapped cache

Process Py: Lineid Lock Tag Word 0 Word 1
Lock Cache(00001)

Lock Cache(00010) Line0 P1 000 a b
res < load(00001)

Unlock _Cache(00001) Linel P; 000 c d

Unlock _Cache(00010)

Attacker can no longer tamper with lines 0 and 1

Partionned Lock cache (PLcache) proposed by Zhenghong Wang and Ruby B. Lee in
2007
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const uint8_t sbox[:

rsbox
oxds,

Constant time ope

Cache protection

000000000000 000000e 000

Example on the S-box of AES

int lock_addressl = &sbox;
int lock_address2 &rsbox;
if(lock_required)

for (int i = 0; i< lock_length; i+=lock_stride)
{
__builtin_lock(i+lock_addressl)
__builtin_lock(i+lock_address2)

struct AES_ctx ctx;
AES_init_ctx(&ctx, key);

AES_ECB_encrypt(&ctx, 1in);

if(lock_required)
{

for (int i = ©; i< lock_length; i+=lock_stride)
{
__builtin_unlock(i+lock_addressl)
__builtin_unlock(i+lock_address2)

Improvement to Lock
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Issues of PLcache and proposition

® Memory access on locked lines still alter cache state (LRU policy)

® The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.
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Issues of PLcache and proposition

® Memory access on locked lines still alter cache state (LRU policy)

® The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.
We propose the following properties as requirement of any lock implementation :

® Memory access on a locked line cannot alter the cache in an observable manner

® Locked line can only be unlocked explicitly (with the unlock instruction)
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Simulation on Camellia encryption : Vulnerable S-box

inputl + input2 X
Il

!
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Accessed cache set
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0 500 1000 1500 2000 2500 3000
Time (in amount of executed instructions)
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Simulation on Camellia encryption :

Accessed cache set

Constant time operations

0000

memory access for input 1
memory access for input 2

+

X

Cache protection

000000000000 0000000

lock for input 1
lock for input 2

Protected S-box

o
<

120

100

*

BOMé 4

%

60 *
40
20
o# i &
0 500 1000 1500 2000 2500

Time (in amount of executed instructions)

3000

Improvement to Lock
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Perspectives

Priorities:
® Formal proof of the security guarantees

® Performance evaluations

Next perspectives:
® Generalize the lock on multi-level caches
¢ Protection on branching (branch balancing + instruction cache protection)

e Additional protections for a alternative trade-off between spend cache space and
execution time



	Context
	Constant time operations
	Cache protection
	Improvement to Lock

