Lab_'STICC

Constant time operations 0000

Cache protection

Improvement to Lock

Constant Time Security at a Low Cost for Embedded Systems Through Hardware/Software Cooperation

Jean-Loup Hatchikian-Houdot

Epicure Team, Inria Supervised by Frédéric Besson, Guillaume Hiet, Pierre Wilke In collaboration with Nicolas Gaudin, Pascal Cotret, Guy Gogniat, Vianney Lapôtre

March 27, 2023

Constant time operations

Cache protection

Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

Context ○●○○○○○○○ Constant time operations

Cache protection

Improvement to Lock

Embedded systems and Internet-of-Things (IoT)

- Used in a lot of devices (industrial, medical, etc.)
- $\rightarrow\,$ Must be tiny, cheap, and have low power consumption
- \rightarrow Can handle sensitive data
 - Often have internet access (Software updates, cloud access, remote control, etc.)
- \rightarrow Attackers can force their own code to execute on those device to steal data to victim process

Constant time operations 0000

Cache protection

Improvement to Lock

Use case : IoT

Cheap embedded system with low power consumption :

- No speculation
- In-Order
- Mono-threading:

Constant time operations

Cache protection

Improvement to Lock

Definition : Timing leakage & Constant Time Security **Program leaking the value of a secret**:

The attacker can observe leakages if its code run on the same hardware and can measure execution time:

Constant Time Security (CTS):

 $\rightarrow~$ No secrets exposed through timing leakage

Constant time operations

Cache protection

Improvement to Lock

Causes of leakages

- Computations time depending on operands
- e.g.: $res \leftarrow div(x, y)$ $[log_2(y)]$
 - Memory accesses
- $e.g.: res \leftarrow load(address) [cache_line(address)]$
 - Conditional jumps (future work)
- e.g.: if (condition) [condition]

Constant time operations 0000

Cache protection

Improvement to Lock

Software only Countermeasure

Constant time programming (Timing does no depends on secrets)

- Restrict the programmer
- $\rightarrow\,$ E.g., no memory access on a secret address.
 - Could rely on undefined micro-architectural behaviors
- $\rightarrow\,$ E.g., multiplication is not CTS on every processor.

Constant time operations

Cache protection

Improvement to Lock

Hardware only Countermeasure

E.g., Cache partitioning

- Cannot tell apart secret from public data
- $\rightarrow\,$ Unnecessary high cost when handling public data

Constant time operations

Cache protection

Improvement to Lock

Proposal: Cooperation between Hardware and Software

New instructions in the ISA

- Software and Hardware can communicate about security
- $\rightarrow\,$ The software can use costly security only when needed
- Timing behavior specification
- $\rightarrow\,$ Security guaranties against timing attacks

Cache protection

Improvement to Lock

Requirement and Hypothesis

Requirements:

- The software developer does not need to know the hardware implementation
- Secrets defined by the source code
- No timing leakages on secrets
- Security cost must be kept low regarding execution time, memory usage and hardware requirements

Hypothesis:

- The source code, compiler and hardware will comply to the ISA specification
- The attacker does not have physical access to the hardware

Constant time operations •000 Cache protection

Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

Constant time operations $0 \bullet 00$

Cache protection

Improvement to Lock

Safe Operations

Some operations have huge timing variations caused by optimizations

Optimized Operation : Try to finish as fast as possible Unknow execution time \rightarrow Could leak information

Constant time operations $\circ \circ \bullet \circ$

Cache protection

Improvement to Lock

Timing behavior of operations

Some operations have huge timing variations caused by optimizations

<u>Optimized Operation</u> : Try to finish as fast as possible Unknow execution time \rightarrow Could leak information

<u>Safe Operation</u> : Constant execution time → No leaks Will use <u>Worst Case Execution Time</u> (WCET) → Slower

We can define a safe version of them for constant time mode.

Constant time operations

Cache protection

Improvement to Lock

Constant time mode

Code in pseudo-assembly

 $egin{aligned} & x_1 \leftarrow add(x_2, x_3) \ & x_1 \leftarrow div(x_2, x_3) \ & begin \ constant \ time \ mode \ & x_1 \leftarrow add(x_2, x_3) \ & x_1 \leftarrow div(x_2, x_3) \ & end \ constant \ time \ mode \end{aligned}$

Constant time operations

Cache protection

Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Direct mapped cache

Line id	Tag	Word 0	Word 1
Line 0	111	×	x
Line 1	111	x	x

 $b_{1\sim 3}$ b_4 b_5 Tag Line Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	с
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	Word 0	Word 1
Line 0	111	x	x
Line 1	111	x	x

load(00110):	001	1	0
	$b_{1\sim 3}$	b_4	b_5
	Tag	Line	Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	Word 0	Word 1
Line 0	111	x	x
Line 1	111	х	x

load(00110):	001	1	0
	$b_{1\sim 3}$	b_4	b_5
	Tag	Line	Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

A al al una an	Malua
Address	value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	Word 0	Word 1
Line 0	111	x	x
Line 1	111	x	х

load(00110):	001	1	0
	$b_{1\sim 3}$	b_4	b_5
	Tag	Line	Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	W	ord 0	Word	1	
Line 0	111	х		x		
Line 1	111	х		х		
	Cache miss!					
load(0)0110) :	001	1	0		
		$b_{1\sim 3}$	b_4	b_5		
		Tag	Line	Word		

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value		Line id	Tag	W	ord 0	Word	1
00000	а		Line O	111		~	~	
00001	b		Line 0	111		^	^	
00010	С		Line 1	001		σ	h	
00011	d		Line I	001	8			
00100	е		L	load from	RAN	1 (slov	v)	
00101	f							
00110	g		\longrightarrow load(00110) :	001	1	0	
00111	h	-/			$b_{1\sim 3}$	b_4	b_5	
					Tag	Line	Word	

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	с
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	Word 0	Word 1
Line 0	111	x	x
Line 1	001	g	h

load(00111):	001	1	1
	$b_{1\sim 3}$	b_4	b_5
	Tag	Line	Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	с
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	Word 0	Word 1
Line 0	111	x	х
Line 1	001	g	h

load(00111):	001	1	1
	$b_{1\sim 3}$	b_4	b_5
	Tag	Line	Word

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	W	ord 0	Wor	d 1		
Line 0	111	x		×	(
Line 1	001	g		h	1		
	Cache hit!						
load(()0111) :	001	1	1			
		$b_{1\sim 3}$	b_4	b_5			
		Tag	Line	Word			

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping

RAM

Address	Value
00000	а
00001	b
00010	С
00011	d
00100	е
00101	f
00110	g
00111	h

Line id	Tag	W	ord 0	Word	1	
Line 0	111	x		x		
Line 1	001	g		h		
Load from cache (fast)						
lood((0111).	001	1	1		
load(00111):		001	T	T		
		$b_{1\sim 3}$	b_4	b_5		
		Tag	Line	Word		

Constant time operations

Cache protection

Improvement to Lock

Cache: direct mapping - eviction

RAM

Address	Value		Line id	Tag	Wo	ord 0	Word	1
00000	а		Line O	111		~	v	
00001	b		Line 0	111		^	~	
00010	С		Line 1	001		ø	h	
00011	d	$ \longrightarrow $	Line I	001		8	11	
00100	е		Several ad	dresses m	apped	to th	e same	line
00101	f	_ //						
001 <mark>1</mark> 0	g	_//	load(*** 1 *):	***	1	*	
001 <mark>1</mark> 1	h	_/			$b_{1\sim 3}$	b_4	b_5	
					Tag	Line	Word	

Constant time operations

Cache protection

Improvement to Lock

Cache attack

RAM

	Address	Value
	00000	а
tim	00001	b
Vic	00010	с
	00011	d
	00100	е
(er	00101	f
ach	00110	g
Ati	00111	h
-		

Line id	Tag	Word 0	Word 1
Line 0	111	х	x
Line 1	001	g	h

Constant time operations

. . .

Cache protection Improvement to Lock

Cache attack

RAM

. . .

	Address	Value	Line id	Tag	Word 0	Word 1
	00000	а	Line O	001	۵	ſ
tim	00001	b	Line 0	001	C	I
Vic	00010	С	line 1	001	ø	h
	00011	d	Line I	001	6	11
	00100	е	The atta	h its data		
(er	00101	f	The atta			
cach	00110	g				
Att	00111	h				

Constant time operations

Cache protection

Improvement to Lock

Cache attack

RAM

. . .

. . .

	Address	Value		Line id	Tag	Word 0	Word 1			
	00000	а		Line 0	000	Э	h			
tim	00001	b		Line 0	000	a	U			
<i><!--</td--><td>00010</td><td>С</td><td>C Line 1</td><td>Line 1</td><td>001</td><td>σ</td><td>h</td></i>	00010	С	C Line 1	Line 1	001	σ	h			
	00011	00011 d	Line 1	001	6					
	00100	е	- The victim try to secretly							
Ker	00101	f		load the word at 00001						
cacl	00110	g	-							
Ati	00111	h	-							

Constant time operations

Cache protection

Improvement to Lock

Cache attack

RAM

	Address	Value	
	00000	а	-
tim	00001	b	-
Vic	00010	С	-
	00011	d	- /
_	00100	е	_/
(er	00101	f	_ /
tac	00110	g	_/
Ati	00111	h	_
			-

. . .

Direct mapped cache

	Line id	Tag	Word 0	Word 1
7	Line 0	001 Cache miss!	е	f
7	Line 1	001 Cache hit	g	h

The attacker now probe the cache This expose which cache line the victim altered The attacker deduces that the victim either did load(00000) or load(00001)

Constant time operation

Cache protection

Improvement to Lock

What we want to protect

We want to be able to do secret memory accesses (i.e. to not leak at which index we access an array)

Public source code

```
int x = secretTab[secretIndex];
...
```


Constant time operations

Cache protection

Improvement to Lock

Solution : Lock line in cache

Direct mapped cache

Process P_1 : $Lock _Cache(00001)$ $Lock _Cache(00010)$ $res \leftarrow load(00001)$ $Unlock _Cache(00001)$ $Unlock _Cache(00010)$

Line id	Lock	Tag	Word 0	Word 1
Line 0	P_1	000	а	b
Line 1	P_1	000	С	d

Attacker can no longer tamper with lines 0 and 1

Partionned Lock cache (PLcache) proposed by Zhenghong Wang and Ruby B. Lee in 2007

Constant time operations

Cache protection

Improvement to Lock

Example on the S-box of AES

static		uint8_													
⊙xd⊙,															
0×60,	0x81,	0X4T,	oxdc,	0x22,	ox2a,	0X90,	0x88,	0X46,	oxee,	OXD8,	0X14,	oxde,	exse,	exeb,	OXOD,
oxeo,		0x3a,	oxoa,	0X49,	0X06,	0X24,	exsc,	oxc2,	oxd3,	oxac,	0X62,	0X91,	0X95,	0xe4,	0X79,
oxer,	oxc8,	0X37,	oxed,	oxad,	oxd5,	ox4e,	oxa9,	exec,	0X56,	0X14,	oxea,	0X65,	oxra,	oxae,	0X08,
oxba,	0x78,	0X25,	oxze,	OXIC,	oxao,	0XD4,	exce,	oxes,	oxaa,	0X/4,	OXIT,	0X4D,	expa,	exab,	exsa,
0x70,	oxse,	0X05,	0X66,	0X48,	0X03,	OXTO,	oxue,	0X61,	0X35,	0X57,	expy,	0x86,	UXCI,	0x10,	oxye,
oxer,	OXT8,	0x98,	OX11,	0x69,	oxd9,	exae,	0X94,	exap.	0X10,	0x87,	exey,	exce,	0X55,	0X28,	exar,
static	const	uint8_	rsbo												
															0x7d];

Constant time AES with lookup tables (S-box) !

<pre>int lock_address1 = &sbox int lock_address2 = &rsbox if(lock_required)</pre>
<pre>{ for (int i = 0; i< lock_length; i+=lock_stride) {</pre>
builtin_lock(i+lock_address1); builtin_lock(i+lock_address2); }
<pre>struct AES_ctx ctx; AES_init_ctx(&ctx, key);</pre>
AES_ECB_encrypt(&ctx, in);
<pre>if(lock_required) {</pre>
<pre>for (int i = 0; i< lock_length; i+=lock_stride) {</pre>
builtin_unlock(i+lock_address1); builtin_unlock(i+lock_address2); }

Constant time operations

Cache protection

Improvement to Lock

Context

Constant time operations

Cache protection

Improvement to Lock

Cache protection

Improvement to Lock

Issues of PLcache and proposition

- Memory access on locked lines still alter cache state (LRU policy)
- The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.

Cache protection

Improvement to Lock

Issues of PLcache and proposition

- Memory access on locked lines still alter cache state (LRU policy)
- The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs. We propose the following properties as requirement of any lock implementation :

- Memory access on a locked line cannot alter the cache in an observable manner
- Locked line can only be unlocked explicitly (with the unlock instruction)

Constant time operations

Cache protection

Improvement to Lock

Simulation on Camellia encryption : Vulnerable S-box

Constant time operations

Cache protection

Improvement to Lock

Simulation on Camellia encryption : Protected S-box

Constant time operations 0000

Cache protection

Improvement to Lock

Perspectives

Priorities:

- Formal proof of the security guarantees
- Performance evaluations

Next perspectives:

- Generalize the lock on multi-level caches
- Protection on branching (branch balancing + instruction cache protection)
- Additional protections for a alternative trade-off between spend cache space and execution time