Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000 000000 000000

Constant Time Security at a Low Cost for Embedded Systems
Through Hardware/Software Cooperation

Jean-Loup Hatchikian-Houdot

Epicure Team, Inria
Supervised by Frédéric Besson, Guillaume Hiet, Pierre Wilke
In collaboration with Nicolas Gaudin, Pascal Cotret, Guy Gogniat, Vianney Lapdtre

STICC
March 27, 2023

Cominlié:/b;s) @ loreda—
" @:IRISA

p

Context
Constant time operations
Cache protection

Improvement to Lock

2/27

Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000 000000 000000

Embedded systems and Internet-of-Things (loT)

e Used in a lot of devices (industrial,
medical, etc.)

— Must be tiny, cheap, and have low
power consumption

— Can handle sensitive data

e Often have internet access
(Software updates, cloud access,
remote control, etc.)

— Attackers can force their own code
to execute on those device to steal
data to victim process

Context
00®000000

Use case : loT

Cheap embedded system with low power consumption :

e No speculation
e In-Order
e Mono-threading:

Process 1

Context
Switch

| Process 2

Context
Switch

| Process 3

Context
Switch

Process 1

Context Constant time operations Cache protection Improvement to Lock
000@00000 0000 0000000000000 000000 000000

Definition : Timing leakage & Constant Time Security
Program leaking the value of a secret:

Behavior 1

Behavior 2

t'Z t.l

The attacker can observe leakages if its code run on the same hardware and
can measure execution time:

@ Context Victim Context @
|—| Switch Switch |—|
Attacker Attacker

Constant Time Security (CTS):
— No secrets exposed through timing leakage

Context Constant time operations Cache protection Improvement to Lock
000080000 0000 0000000000000 000000 000000

Causes of leakages

e Computations time depending on operands

8- res « div(x, y) [log2(y)]
e Memory accesses

.8 res <+ load(address) [cache line(address)]
e Conditional jumps (future work)

€8 if (condition) [condition]

Context
00000@000

Software only Countermeasure

Source

SR NETCT I Transformed by

[g=EEEHM 2 compiler into
else
res=b;

Software side

Constant time programming (Timing does no depends on secrets)
e Restrict the programmer
— E.g., no memory access on a secret address.
e Could rely on undefined micro-architectural behaviors

— E.g., multiplication is not CTS on every processor.

Context
000000800

Hardware only Countermeasure

CPU

L J

Hardware side

E.g., Cache partitioning
e Cannot tell apart secret from public data

— Unnecessary high cost when handling public data

Context
000000080

Proposal: Cooperation between Hardware and Software

Source

SR NETCT I Transformed by Expressed in

[g=EEEH o compiler into the ISA of the
else
res=b;

Scope of this thesis

New instructions in the ISA
e Software and Hardware can communicate about security

— The software can use costly security only when needed

e Timing behavior specification

— Security guaranties against timing attacks

Context
00000000e

Requirement and Hypothesis

Requirements:

e The software developer does not need to know the hardware implementation

Secrets defined by the source code

No timing leakages on secrets

Security cost must be kept low regarding execution time, memory usage and
hardware requirements

Hypothesis:
e The source code, compiler and hardware will comply to the ISA specification

e The attacker does not have physical access to the hardware

Context
Constant time operations
Cache protection

Improvement to Lock

11/27

Context Constant time operations Cache protection
000000000 0@00 0000000000000000000

Safe Operations

Some operations have huge timing variations caused by optimizations

Optimized Operation : Try to finish as fast as possible
Unknow execution time - Could leak information

Improvement to Lock
000000

Context Constant time operations Cache protection
000000000 00®0 0000000000000000000

Timing behavior of operations

Some operations have huge timing variations caused by optimizations

Optimized Operation : Try to finish as fast as possible
Unknow execution time — Could leak information

Safe Operation : Constant execution time » No leaks

Will use Worst Case Execution Time (WCET) » Slower

We can define a safe version of them for constant time mode.

Improvement to Lock
000000

Constant time operations
oooe

Constant time mode

Code in pseudo-assembly

x1 + add(x2, x3)

X1 < div(Xg,X3)

begin constant time mode
X1 < add(Xg,X3)

x1 + div(x2, x3)

end constant time mode

Leakage

[]

[log2(x3)]

[¢]

[¢]

[¢] (performance loss)

[¢]

Context
Constant time operations
Cache protection

Improvement to Lock

15/27

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0®00000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

bi~3 bs bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
00®0000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 bs bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0008000000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 by bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0000800000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 111 X X

load(00110): 001 1 O
bi~3 bs bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+ |Q| 0 |OT

Cache protection
0000080000000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X
Line 1 111 X X
Cache miss!

load(00110): 001 1 O
bi~3 bs bs
Tag Line Word

Cache protection
000000@000000000000

Cache: direct mapping

RAM Direct mapped cache

Address Value Line id Tag Word 0 Word 1
a

00000 Line 0 111 X X
00001 b
00010 < Linel 001 g h
00011 d
00100 e Load from RAM (slow)
00101 f
00110 g load(00110): 001 1 0
00111 h bi~3z ba bs

Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000@00000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 001 g h

load(00111): 001 1 1
bi~3 bs bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000080000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 001 g h

load(00111): 001 1 1
bi~3 by bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000008000000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X
Line 1 001 g h
Cache hit!

load(00111): 001 1 1
bi~3 bs bs
Tag Line Word

RAM
Address

Value

00000

a

00001

00010

00011

00100

00101

00110

00111

S|+~ || 0O |OT

Cache protection
0000000000800000000

Cache: direct mapping

Direct mapped cache

Line id Tag Word 0 Word 1

Line 0 111 X X

Line 1 001 g h

Load from cache (fast)

load(00111): 001 1 1
bi~3 bs bs
Tag Line Word

0000000O0C 00000000000 e0000000 D0000C

Cache: direct mapping - eviction

RAM Direct mapped cache
Address Value Line id Tag Word 0 Word 1
00000 ° Line 0 111 X X
00001 b
00010 < Linel 001 g h
00011 d
00100 € Several addresses mapped to the same line
00101 f
00110 g 1%): 1
00111 h bi~3z ba bs

Tag Line Word

Context Constant time operations Cache protection Improvement to Lock

RAM
Address

Value

00000

00001

00010

00011

00100

00101

00110

00111

oS|I+~ |0 |T

Cache protection
0000000000008000000

Cache attack

Direct mapped cache

Line id Tag Word 0 Word 1

Line O 111 X X

Line 1 001 g h

Attacker

RAM
Address

Value

00000

a

Cache protection
0000000000000e00000

Cache attack

Direct mapped cache

Line id Tag Word 0 Word 1

00001

00010

Line 0 001 e f

00011

Line 1 001 g h

00100

00101

00110

00111

oS|I+~ |0 |T

The attacker fill the cache with its data

000000000000 00Oe0C00O0 000000

Cache attack

Context Constant time operations Cache protection Improvement to Lock

RAM Direct mapped cache
Address Value Line id Tag Word 0 Word 1
00000 a
Line O 000 a b
£ 00001 b — "
=
> 00010 < Line 1 001 g h
00011 d
00100 © The victim try to secretly
00101 f load the word at 00001
00110 g
00111 h

Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000 00e000 000000

Cache attack

RAM Direct mapped cache
Address Value Line id Tag Word 0 Word 1
00000 a
Line 0 001 . e f
00001 b Cache miss!
C
00010 Line 1 001 g h
00011 d
. 00100 € The attacker now probe the cache
9 00101 f This expose which cache line the victim altered
§ 00110 g The attacker deduces that the victim
& 00111 h either did load(00000) or load(00001)

Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000 000e00 000000

What we want to protect

We want to be able to do Publlc source code
secret memory accesses

(i.e. to not leak at which

. int X = secretTab[secretIndex];
index we access an array)

-
Valg

Range of valy

addresses of 4 vala <3:15ecret1ndex
secretTab

valp

\

Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000 0000e0 000000

Solution : Lock line in cache

Direct mapped cache

Process Py: Lineid Lock Tag Word 0 Word 1
Lock Cache(00001)

Lock Cache(00010) Line0 P1 000 a b
res < load(00001)

Unlock _Cache(00001) Linel P; 000 c d

Unlock _Cache(00010)

Attacker can no longer tamper with lines 0 and 1

Partionned Lock cache (PLcache) proposed by Zhenghong Wang and Ruby B. Lee in
2007

Context

const uint8_t sbox[:

rsbox
oxds,

Constant time ope

Cache protection

000000000000 000000e 000

Example on the S-box of AES

int lock_addressl = &sbox;
int lock_address2 &rsbox;
if(lock_required)

for (int i = 0; i< lock_length; i+=lock_stride)
{
__builtin_lock(i+lock_addressl)
__builtin_lock(i+lock_address2)

struct AES_ctx ctx;
AES_init_ctx(&ctx, key);

AES_ECB_encrypt(&ctx, 1in);

if(lock_required)
{

for (int i = ©; i< lock_length; i+=lock_stride)
{
__builtin_unlock(i+lock_addressl)
__builtin_unlock(i+lock_address2)

Improvement to Lock

Context
Constant time operations
Cache protection

Improvement to Lock

22/27

Context Constant time operations Cache protectio Improvement to Lock

000000C 000C 0000000000000000000 000000

Issues of PLcache and proposition

® Memory access on locked lines still alter cache state (LRU policy)

® The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.

Improvement to Lock
008000

Issues of PLcache and proposition

® Memory access on locked lines still alter cache state (LRU policy)

® The victim can accidentally unlock it's own locked lines in some cases

We want a stronger version of lock that guarantees no timing leakage could occurs.
We propose the following properties as requirement of any lock implementation :

® Memory access on a locked line cannot alter the cache in an observable manner

® Locked line can only be unlocked explicitly (with the unlock instruction)

Context Constant time operations Cache protection Improvement to Lock
000000000 0000 0000000000000000000 000800

Simulation on Camellia encryption : Vulnerable S-box

inputl + input2 X
Il

!
120 S T T A THIX X

100

80

60

40

Accessed cache set

20

X N

0 * * X X +\z‘|—= VYA X Y a éﬂ

0 500 1000 1500 2000 2500 3000
Time (in amount of executed instructions)

Context
000000000

Simulation on Camellia encryption :

Accessed cache set

Constant time operations

0000

memory access for input 1
memory access for input 2

+

X

Cache protection

000000000000 0000000

lock for input 1
lock for input 2

Protected S-box

o
<

120

100

*

BOMé 4

%

60 *
40
20
o# i &
0 500 1000 1500 2000 2500

Time (in amount of executed instructions)

3000

Improvement to Lock
000080

Improvement to Lock
00000e

Perspectives

Priorities:
® Formal proof of the security guarantees

® Performance evaluations

Next perspectives:
® Generalize the lock on multi-level caches
¢ Protection on branching (branch balancing + instruction cache protection)

e Additional protections for a alternative trade-off between spend cache space and
execution time

	Context
	Constant time operations
	Cache protection
	Improvement to Lock

