ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

March 28t 2023
Journées du GT-MFS To Appear

USENIX Security 2023

Lesly-Ann Daniel Marton Bognar Job Noorman Sébastien Bardin Tamara Rezk Frank Piessens

KU Leuven KU Leuven KU Leuven CEA List INRIA KU Leuven

Speculative execution is powerful © ...

char A[lo6]

if (idx < 16) Speculate instead of stalling!
X = load A[i1dx]

compute (x)

Good prediction: performance gain!
Bad prediction (transient executions): revert changes and continue.

Processor speculates on branch targets, store-to-load dependencies, etc.

.. but leads to Spectre attacks ®

char A[lo6]

char secret

if (idx < 16) Mispredicted with 1dx = 16
x = load A[idx] X = secret
y = load x Leaks secret tocache!

Changes to microarchitectural state (e.g. cache) are not reverted! C Y) {{}5

Idea. Force victim to leak secret data during transient execution
and recover them with microarchitectural attacks

Constant-Time vs Spectre?

Even constant-time programs are vulnerable to Spectre ®!

Constant-time

* Protection against (non-transient) microarchitectural attacks

* No secret-dependent control flow & memory accesses /
e Used in many cryptographic implementations

Constant-Time in the Spectre Era

* Speculative semantics for software defenses
— Hard to reason about
— Accommodate new speculation mechanisms?

Secure Speculation for Constant-Time!

Developers should not care about speculations

Hardware should not speculatively leak secrets

But still be efficient and enables speculation

VY

<

Hardware defense:
Secure speculation for constant-time!

How do | know that my defense works?

YOU BUILT
HARDWARE DEFENSE=

YL

THATS CUTE

imgflipicom

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
“IMDEA Software Institute "Microsoft Research *Saarland University

Formalize hardware leakage as a contract

Software side Hardware side
Program secure software wrt. contract Hardware complies with contract
* Secure software design — O * Formally express guarantees

e \Verification

of hardware defenses
* Compilation @

Hardware-Software Contracts for
Secure Speculation

Marco Guarnieri*, Boris Kopf', Jan Reineke*, and Pepe Vila*
“IMDEA Software Institute "Microsoft Research *Saarland University

Formalize hardware leakage as a contract

Pro

PS

& No secure speculation for constant-time programs!

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)
e Inform hardware of what is secret

 Track secret taint in hardware

ConTEXT: A Generic Approach for Mitigating
Spectre SpectreGuard: An Efficient Data-centric Defense Mechanism

against Spectre Attacks

* Do not leak tainted values during speculation

Michael Schwarz!, Moritz Lipp!, Claudio Canella!, Robert Schilling!?, Florian Kargl!, Daniel Gruss' Jacob Fustos Farzad Farshchi Heechul Yun
!Graz University of Technology 2Know-Center GmbH University of Kansas University of Kansas University of Kansas

Speculative Privacy Tracking (SPT): Leaking Information From
Speculative Execution Without Compromising Privacy

Rutvik Choudhary Jiyong Yu
UIUC, USA UIUC, USA
Christopher W. Fletcher Adam Morrison
UIUC, USA Tel Aviv University, Israel

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)
e Inform hardware of what is secret

 Track secret taint in hardware

\Vg

ConTEXT: A Generic Approach for Mitigating

* Do not leak tainted values during speculation

——Mechanism

Technical implementation details & evaluation
No end-to-end formal security guarantee
for constant-time programs

Rutvih (honadhary by

wchul Yue

bopher W Fletcher Adam \Mowrmw

10

Challenges

* Account for all existing speculation mechanisms

* Account for futuristic speculation mechanisms

* Account for declassification

e Adapt HW/SW contract framework for these new features

e Evaluation: hardware costs?

11

Our contributions

ProSpeCT: Formal processor model with HST
* Proof: constant-time programs do not leak secrets
* Generic: all Spectre variants + LVI
* Allows for declassification

First to consider Load Value Speculation
* Novel insight: sometimes need to rollback correct speculations for security

Implementation in a RISC-V microarchitecture
* First synthesizable implementation
* Evaluation: hardware cost, performance, annotations

12

ProSpeCT
Secure Speculation for Constant-Time

llustration with Spectre-v1

Spectre-vl. Exploit branch prediction

char A[16] No defense

char secret C(j
if (1dx < 16) Mispredicted I

x = load A[1dx]
leak (x)

X = secret

secret istransiently leaked !

Consider idx = 16 8

14

llustration with Spectre-v1

Spectre-vl. Exploit branch prediction

char A[16] // public memory
char secret // secret memory
if (idx < 106)

X = load A[i1dx]

leak (x)

Consider idx = 16

ProSpeCT

Developer annotates secret memory

15

llustration with Spectre-v1

Spectre-vl. Exploit branch prediction

char A[16] // public memory ProSpeCT
char secret // secret memory Developer annotates secret memory
1f (idx < 16) Prediction

x = load Af[1dx] X = secret:H

leak (x)

Consider idx = 16

16

llustration with Spectre-v1

Spectre-vl. Exploit branch prediction

char A[16] // public memory
char secret // secret memory
if (idx < 106)

X = load A[i1dx]

leak (x)

Consider idx = 16

ProSpeCT

Developer annotates secret memory

Prediction

X = secret:H

secret isnotforwardedto leak

17

Illustration with LVI

LVI. Inject values at faulting loads

char A[16]
char secret
x = load 1dx
y = load A[x]
leak (y)

Akin to Load Value Prediction

No defense

Attackerinjectsx = 16

y = secret

secret istransiently leaked!

X

18

Illustration with LVI

char A[l6] // public memory
char secret // secret memory
x = load 1dx

y = load A[x]

leak (y)

Akin to Load Value Prediction

ProSpeCT

Developer annotates secret memory

19

Illustration with LVI

char A[l6] // public memory
char secret // secret memory
x = load 1dx

y = load A[x]

leak (y)

Akin to Load Value Prediction

ProSpeCT

Developer annotates secret memory

Attackerinjectsx = 16

y = secret:H

20

Illustration with LVI

char A[l6] // public memory
char secret // secret memory
x = load 1dx

y = load A[x]

leak (y)

Akin to Load Value Prediction

ProSpeCT

Developer annotates secret memory

Attackerinjectsx = 16

y = secret:H

secret isnotforwardedto leak

21

Design Choices

Software side Hardware side

* Label secret memory * Track security labels

* Constant-time program » Secrets do not speculatively flow to

insecure instructions

e Secret written to public memory is
declassified Predictions do not leak secrets

Code without secret = free speculation
Constant-time programs = only block mispredictions

22

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

(a,1) 5 (a1

architectural state microarchitectural context declassification trace

23

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

(a,1) 5 (a1

Abstract microarchitectural context u Attacker observations
+ Functions update, predict, next Attacker influence

24

ProSpeCT: Generic formal processor model for HST

Semantics of out-of-order speculative processor with HST

(a,1) 5 (a1

Attacker observations

Abstract microarchitectural context u
Attacker influence

+ Functions update, predict, next

At each step: 1 is updated with all public values
— predictions can depend on any public value

25

Secure Speculation for Constant-Time Policy

Security (no declassification).

For all constant-time program (architectural semantics)
if ag —public ap and (ag, 1) =" (ay, py,)

then (ag, 1) =" (ap, 1y) and p, =y,

o

‘Architectura/ semantics = hardware software security contract ‘@

26

Secure Speculation for Constant-Time Policy

Security (with declassification).
For all constant-time program up to declassification

if ag —public ap and (ay, .u) —" (an, ty)

then (ao» ,Ll), d oh (an; .un) and Hn = .un

o

‘Declassify ciphertext while still protecting plaintext

27

Load Prediction: Rollback correct executions?

char secret // secret memory

x = load secret
vy = x + 4
Execution1l: secret=0 Execution 2: secret=1
Predict load X =0 (2); v = 4 x =0 (2); y = 4
valueto 0O

28

Load Prediction: Rollback correct executions?

char secret // secret memory

x = load secret

y = x + 4

Execution1l: secret=0 Execution 2: secret=1
Predict load x =0 (2); v = 4 x =0 (2); v = 4
value to 0
Resolve x =0; v =4 x =1
Commitif secret=0 VS Rollback if secret =0

— Implicit resolution-based channel

29

Load Prediction: Rollback correct executions?

char secret // secret memory
x = load secret
y = x + 4
Execution1l: secret=0 Execution 2: secret=1
Predict load X =0 (2); v = 4 x =0 (2); y = 4
value to 0
Resolve x = 0:H x = 1:H

Solution: Always rollback when actual value is secret

30

Implementation and Evaluation

31

Implementation

Prototype Risc-V implementation

Firsts synthesizable implementation
On top of Proteus modular RiSC-V processor
Open-sourced on github!

Limitation
* Only branch prediction
» Secrets not forwarded at all during speculation (conservative)

32

Evaluation: Labelling Secrets

Inform hardware about secrets?

Secret are labelled in source and co-located in binary

Boundaries stored in CSRs
— Currently supporting up to 2 separate regions
— Easyto change

Evaluation: is annotation easy? LoC S A, Aq 1 Description

djbsort [86] 246 L. 3 0 6 Constant-time sort

Need to mark secretin source sha256 [59] 1795 L 34 0 6 Hash function
chacha20 [59] 1864 L 51 O 6 Encryption

Need avoid stack spilling! curve25519 [59] 3026 H 967 0 Elliptic curve

33

Evaluation: Hardware

Hardware implementation Hardware costs
* Proteus is written in SpinalHDL * LUTs: 16,847 - 19,728 (+17%)
e =5000 lines of Scala code * Registers: 11,913 - 12,600 (+6%)

* Changes for ProSpeCT: = 400 lines * Critical path: 30.1 ns - 30.7 ns (+2%)

34

Runtime Overhead

Benchmark [1] spec/crypto 25/75 50/50 75/25 90/10

e Amount of secret

* Speculation-heavy public Secret
computations / crypto Al 110% 125% 136% 145%

None 100% 100% 100% 100%
100% 100% 100% 100%

Conclusion

Results similar to [1]
Precise annotation + restricted secret computations= Low overhead

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019
35

Conclusion

Check our paper on arXiv!
Hardware Secrecy Tracking

|_ Software informs hardware about secret

Strong security guarantees
ProSpeCT = end-to-end security for constant-time programs

Low overhead
ProSpeCT = no runtime overhead on public data

36

Future Work?

Formal model

* Cryptographic security down to the hardware?

Compiler-support

e Separate secret from public memory

e Ensure no unintentional declassification

Validate RISC-V implementation
* Contract-based CPU testing (e.g., Revizor, Scam-V)?

* Hardware-fuzzing / Model checking / Formal methods?

37

Credit

Icons made by Freepik
from www.flaticon.com

—gl

Diamondicons created by
Vectors Market — Flaticon
www.flaticon.com/free-
icons/diamond

v

Hard work icon created by
monkik — Flaticon
www.flaticon.com/free-

icons/hard-work

38

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.flaticon.com/free-icons/hard-work
https://www.flaticon.com/free-icons/hard-work
http://www.flaticon.com/free-icons/diamond
http://www.flaticon.com/free-icons/diamond

	Slide 1: ProSpeCT: Provably Secure Speculation for the Constant-Time Policy
	Slide 2: Speculative execution is powerful  …
	Slide 3: … but leads to Spectre attacks 
	Slide 4: Constant-Time vs Spectre?
	Slide 5: Secure Speculation for Constant-Time!
	Slide 6: How do I know that my defense works?
	Slide 7: Hardware-Software Contracts
	Slide 8: Hardware-Software Contracts
	Slide 9: Hardware Secrecy Tracking
	Slide 10: Hardware Secrecy Tracking
	Slide 11: Challenges
	Slide 12: Our contributions
	Slide 13: ProSpeCT Secure Speculation for Constant-Time
	Slide 14: Illustration with Spectre-v1
	Slide 15: Illustration with Spectre-v1
	Slide 16: Illustration with Spectre-v1
	Slide 17: Illustration with Spectre-v1
	Slide 18: Illustration with LVI
	Slide 19: Illustration with LVI
	Slide 20: Illustration with LVI
	Slide 21: Illustration with LVI
	Slide 22: Design Choices
	Slide 23: ProSpeCT: Generic formal processor model for HST
	Slide 24: ProSpeCT: Generic formal processor model for HST
	Slide 25: ProSpeCT: Generic formal processor model for HST
	Slide 26: Secure Speculation for Constant-Time Policy
	Slide 27: Secure Speculation for Constant-Time Policy
	Slide 28: Load Prediction: Rollback correct executions?
	Slide 29: Load Prediction: Rollback correct executions?
	Slide 30: Load Prediction: Rollback correct executions?
	Slide 31: Implementation and Evaluation
	Slide 32: Implementation
	Slide 33: Evaluation: Labelling Secrets
	Slide 34: Evaluation: Hardware
	Slide 35: Runtime Overhead
	Slide 36: Conclusion
	Slide 37: Future Work?
	Slide 38: Credit

