
ProSpeCT: Provably Secure Speculation
for the Constant-Time Policy

Lesly-Ann Daniel

KU Leuven

Marton Bognar

KU Leuven

Job Noorman

KU Leuven

March 28th 2023

Journées du GT-MFS

Tamara Rezk

INRIA

Sébastien Bardin

CEA List

Frank Piessens

KU Leuven

To Appear
USENIX Security 2023

Speculative execution is powerful ☺ …

2

Good prediction: performance gain!

Bad prediction (transient executions): revert changes and continue.

Processor speculates on branch targets, store-to-load dependencies, etc.

char A[16]

if (idx < 16)

x = load A[idx]

compute(x)

Speculate instead of stalling!

… but leads to Spectre attacks 

3

Changes to microarchitectural state (e.g. cache) are not reverted!

char A[16]

char secret

if (idx < 16)

x = load A[idx]

y = load x

Idea. Force victim to leak secret data during transient execution
and recover them with microarchitectural attacks

x = secret

Leaks secret to cache!

Mispredicted with idx = 16

Constant-Time vs Spectre?

Even constant-time programs are vulnerable to Spectre !

Constant-time
• Protection against (non-transient) microarchitectural attacks
• No secret-dependent control flow & memory accesses
• Used in many cryptographic implementations

4

Constant-Time in the Spectre Era

• Speculative semantics for software defenses
→ Hard to reason about

→ Accommodate new speculation mechanisms?

Secure Speculation for Constant-Time!

5

Developers should not care about speculations

Hardware should not speculatively leak secrets

But still be efficient and enables speculation

Hardware defense:
Secure speculation for constant-time!

How do I know that my defense works?

6

Hardware-Software
Contracts

Software side

Program secure software wrt. contract
• Secure software design
• Verification
• Compilation

Hardware side

Formalize hardware leakage as a contract

Hardware complies with contract
• Formally express guarantees

of hardware defenses

Hardware-Software
Contracts

Software side

Program secure software wrt. contract
• Secure software design
• Verification
• Compilation

Hardware side

Formalize hardware leakage as a contract

Hardware complies with contract
• Formally express guarantees

of hardware defensesNo secure speculation for constant-time programs!

Hardware Secrecy Tracking

Hardware Secrecy Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Do not leak tainted values during speculation

9

Hardware Secrecy Tracking

10

Technical implementation details & evaluation
No end-to-end formal security guarantee

for constant-time programs

Hardware Secrecy Tracking (HST)

• Inform hardware of what is secret

• Track secret taint in hardware

• Do not leak tainted values during speculation

Challenges

• Account for all existing speculation mechanisms

• Account for futuristic speculation mechanisms

• Account for declassification

• Adapt HW/SW contract framework for these new features

• Evaluation: hardware costs?

11

Our contributions

ProSpeCT: Formal processor model with HST
• Proof: constant-time programs do not leak secrets

• Generic: all Spectre variants + LVI

• Allows for declassification

First to consider Load Value Speculation
• Novel insight: sometimes need to rollback correct speculations for security

Implementation in a RISC-V microarchitecture
• First synthesizable implementation

• Evaluation: hardware cost, performance, annotations
12

ProSpeCT
Secure Speculation for Constant-Time

13

Illustration with Spectre-v1

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

14

No defense

x = secret

secret is transiently leaked !

Consider idx = 16

Mispredicted

Spectre-v1. Exploit branch prediction

Illustration with Spectre-v1

char A[16] // public memory

char secret // secret memory

if (idx < 16)

x = load A[idx]

leak(x)

15

ProSpeCT

Developer annotates secret memory

Consider idx = 16

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

Spectre-v1. Exploit branch prediction

Illustration with Spectre-v1

char A[16] // public memory

char secret // secret memory

if (idx < 16)

x = load A[idx]

leak(x)

16

ProSpeCT

Developer annotates secret memory

Consider idx = 16

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

x = secret:H

Prediction

Spectre-v1. Exploit branch prediction

Illustration with Spectre-v1

char A[16] // public memory

char secret // secret memory

if (idx < 16)

x = load A[idx]

leak(x)

17

ProSpeCT

secret is not forwarded to leak

Developer annotates secret memory

Consider idx = 16

char A[16]

char secret

if (idx < 16)

x = load A[idx]

leak(x)

x = secret:H

Prediction

Spectre-v1. Exploit branch prediction

Illustration with LVI

char A[16]

char secret

x = load idx

y = load A[x]

leak(y)

18

No defense

y = secret

secret is transiently leaked!

Attacker injectsx = 16

LVI. Inject values at faulting loads

Akin to Load Value Prediction

Illustration with LVI

19

char A[16] // public memory

char secret // secret memory

x = load idx

y = load A[x]

leak(y)

ProSpeCT

Akin to Load Value Prediction

Developer annotates secret memory

Illustration with LVI

20

char A[16] // public memory

char secret // secret memory

x = load idx

y = load A[x]

leak(y)

Attacker injectsx = 16

ProSpeCT

Akin to Load Value Prediction

Developer annotates secret memory

y = secret:H

Illustration with LVI

21

char A[16] // public memory

char secret // secret memory

x = load idx

y = load A[x]

leak(y)

y = secret:H

secret is not forwarded to leak

Attacker injectsx = 16

ProSpeCT

Akin to Load Value Prediction

Developer annotates secret memory

Design Choices

22

Software side

• Label secret memory

• Constant-time program

• Secret written to public memory is
declassified

Hardware side

• Track security labels

• Secrets do not speculatively flow to
insecure instructions

• Predictions do not leak secrets

Code without secret ⟹ free speculation
Constant-time programs ⟹ only block mispredictions

ProSpeCT: Generic formal processor model for HST

23

𝑎, 𝜇 ⟶ (𝑎′ , 𝜇′)

Semantics of out-of-order speculative processor with HST

architectural state microarchitectural context

𝑑

declassification trace

ProSpeCT: Generic formal processor model for HST

Abstract microarchitectural context 𝜇

+ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

24

{

𝑎, 𝜇 ⟶ (𝑎′ , 𝜇′)

Semantics of out-of-order speculative processor with HST

𝑑

Attacker observations
Attacker influence

ProSpeCT: Generic formal processor model for HST

Abstract microarchitectural context 𝜇

+ Functions 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑛𝑒𝑥𝑡

25

Attacker observations
Attacker influence{

At each step: 𝜇 is updated with all public values
→ predictions can depend on any public value

𝑎, 𝜇 ⟶ (𝑎′ , 𝜇′)

Semantics of out-of-order speculative processor with HST

𝑑

Secure Speculation for Constant-Time Policy

Security (no declassification).

For all constant-time program (architectural semantics)

26

then 𝑎0
′ , 𝜇 ⟶𝑛 𝑎𝑛

′ , 𝜇𝑛
′ and 𝜇𝑛 = 𝜇𝑛

′

if 𝑎0 =𝑝𝑢𝑏𝑙𝑖𝑐 𝑎0
′ and 𝑎0 , 𝜇 ⟶𝑛 (𝑎𝑛 , 𝜇𝑛)

Architectural semantics = hardware software security contract

Secure Speculation for Constant-Time Policy

27

then 𝑎0
′ , 𝜇 , 𝑑 ↪𝑛 𝑎𝑛

′ , 𝜇𝑛
′ and 𝜇𝑛 = 𝜇𝑛

′

if 𝑎0 =𝑝𝑢𝑏𝑙𝑖𝑐 𝑎0
′ and 𝑎0 , 𝜇 ⟶𝑛 (𝑎𝑛 , 𝜇𝑛)

Declassify ciphertext while still protecting plaintext

𝑑

Security (with declassification).

For all constant-time program up to declassification

Load Prediction: Rollback correct executions?

28

char secret // secret memory

x = load secret

y = x + 4

x = 0 (?); y = 4 x = 0 (?); y = 4

Execution 1: secret=0

Predict load
value to 0

Execution 2: secret=1

Load Prediction: Rollback correct executions?

29

char secret // secret memory

x = load secret

y = x + 4

x = 0; y = 4 x = 1

⟹ Implicit resolution-based channel

Predict load
value to 0

Resolve

Commit if secret = 0 vs Rollback if secret ≠ 0

x = 0 (?); y = 4 x = 0 (?); y = 4

Execution 1: secret=0 Execution 2: secret=1

Load Prediction: Rollback correct executions?

30

char secret // secret memory

x = load secret

y = x + 4

x = 0:H x = 1:H

Predict load
value to 0

Resolve

Solution: Always rollback when actual value is secret

x = 0 (?); y = 4 x = 0 (?); y = 4

Execution 1: secret=0 Execution 2: secret=1

Implementation and Evaluation

31

Implementation

Prototype Risc-V implementation

• Firsts synthesizable implementation

• On top of Proteus modular RiSC-V processor

• Open-sourced on github!

• Limitation

• Only branch prediction

• Secrets not forwarded at all during speculation (conservative)

32

Evaluation: Labelling Secrets

33

Inform hardware about secrets?

Secret are labelled in source and co-located in binary
Boundaries stored in CSRs

‒ Currently supporting up to 2 separate regions
‒ Easy to change

Evaluation: is annotation easy?

Need to mark secret in source
Need avoid stack spilling!

Evaluation: Hardware

34

Hardware implementation

• Proteus is written in SpinalHDL

• ≈5000 lines of Scala code

• Changes for ProSpeCT: ≈ 400 lines

Hardware costs

• LUTs: 16,847 → 19,728 (+17%)

• Registers: 11,913 → 12,600 (+6%)

• Critical path: 30.1 ns → 30.7 ns (+2%)

Runtime Overhead

35

Benchmark [1]

• Amount of secret

• Speculation-heavy public
computations / crypto

[1] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An Efficient Data-Centric Defense Mechanism
against Spectre Attacks”. In: DAC. 2019

spec/crypto 25/75 50/50 75/25 90/10

None 100% 100% 100% 100%

Secret 100% 100% 100% 100%

All 110% 125% 136% 145%

Conclusion

Results similar to [1]

Precise annotation + restricted secret computations = Low overhead

Conclusion

Software informs hardware about secret

36

Hardware Secrecy Tracking

ProSpeCT ⟹ end-to-end security for constant-time programs

Strong security guarantees

Low overhead
ProSpeCT ⟹ no runtime overhead for constant-time codeno runtime overhead on public data

Check our paper on arXiv!

Future Work?

Formal model

37

• Cryptographic security down to the hardware?

• Contract-based CPU testing (e.g., Revizor, Scam-V)?

• Hardware-fuzzing / Model checking / Formal methods?

• Separate secret from public memory

• Ensure no unintentional declassification

Compiler-support

Validate RISC-V implementation

Credit

38

Icons made by Freepik
from www.flaticon.com

Hard work icon created by
monkik – Flaticon
www.flaticon.com/free-
icons/hard-work

Diamond icons created by
Vectors Market – Flaticon
www.flaticon.com/free-
icons/diamond

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/
https://www.flaticon.com/free-icons/hard-work
https://www.flaticon.com/free-icons/hard-work
http://www.flaticon.com/free-icons/diamond
http://www.flaticon.com/free-icons/diamond

	Slide 1: ProSpeCT: Provably Secure Speculation for the Constant-Time Policy
	Slide 2: Speculative execution is powerful  …
	Slide 3: … but leads to Spectre attacks 
	Slide 4: Constant-Time vs Spectre?
	Slide 5: Secure Speculation for Constant-Time!
	Slide 6: How do I know that my defense works?
	Slide 7: Hardware-Software Contracts
	Slide 8: Hardware-Software Contracts
	Slide 9: Hardware Secrecy Tracking
	Slide 10: Hardware Secrecy Tracking
	Slide 11: Challenges
	Slide 12: Our contributions
	Slide 13: ProSpeCT Secure Speculation for Constant-Time
	Slide 14: Illustration with Spectre-v1
	Slide 15: Illustration with Spectre-v1
	Slide 16: Illustration with Spectre-v1
	Slide 17: Illustration with Spectre-v1
	Slide 18: Illustration with LVI
	Slide 19: Illustration with LVI
	Slide 20: Illustration with LVI
	Slide 21: Illustration with LVI
	Slide 22: Design Choices
	Slide 23: ProSpeCT: Generic formal processor model for HST
	Slide 24: ProSpeCT: Generic formal processor model for HST
	Slide 25: ProSpeCT: Generic formal processor model for HST
	Slide 26: Secure Speculation for Constant-Time Policy
	Slide 27: Secure Speculation for Constant-Time Policy
	Slide 28: Load Prediction: Rollback correct executions?
	Slide 29: Load Prediction: Rollback correct executions?
	Slide 30: Load Prediction: Rollback correct executions?
	Slide 31: Implementation and Evaluation
	Slide 32: Implementation
	Slide 33: Evaluation: Labelling Secrets
	Slide 34: Evaluation: Hardware
	Slide 35: Runtime Overhead
	Slide 36: Conclusion
	Slide 37: Future Work?
	Slide 38: Credit

