SoK: Attestation in Confidential Computing

Muhammad Usama Sardar¹ Thomas Fossati² Simon Frost²

¹TU Dresden

²Arm Ltd.

March 29, 2023

Outline

- Problem Statement
- 2 Contributions
- Summary

Relying Party

Attestation

Attestation

Attestation

Holistic view of attestation

Holistic view of attestation

TEE-agnostic attestation architecture

Holistic view of attestation

TEE-agnostic attestation architecture

Mappings to attestation architecture

Holistic view of attestation

TEE-agnostic attestation architecture

Mappings to attestation architecture

Formal specs

Outline

- Problem Statement
- 2 Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE
- Summary

Outline

- Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Holistic View of Attestation

Outline

- Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Limitations of RATS¹

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

- Limitations of RATS¹
 - Local attestation out of scope (cannot express Intel's attestation mechanisms)

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

- Limitations of RATS¹
 - Local attestation out of scope (cannot express Intel's attestation mechanisms)
 - Cannot express anonymous attestation (Intel EPID)

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

- Limitations of RATS¹
 - Local attestation out of scope (cannot express Intel's attestation mechanisms)
 - Cannot express anonymous attestation (Intel EPID)
 - Various ambiguities, e.g., role vs. entity

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

- Limitations of RATS¹
 - Local attestation out of scope (cannot express Intel's attestation mechanisms)
 - Cannot express anonymous attestation (Intel EPID)
 - Various ambiguities, e.g., role vs. entity
- Errata submitted for RATS

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

- Limitations of RATS¹
 - Local attestation out of scope (cannot express Intel's attestation mechanisms)
 - Cannot express anonymous attestation (Intel EPID)
 - Various ambiguities, e.g., role vs. entity
- Errata submitted for RATS
- TEE-agnostic architecture

¹Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

Outline

- Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Main Groups for Attestation

Frameworks

(SCONE, Gramine, MAA, Veraison, ...)

Vendor solutions

(Intel SGX, Intel TDX, AMD SEV-SNP, IBM PEF, ...) Architecture lead solutions (Arm CCA, RISC-V, ...)

Related work		
IETF RATS ²		
Ménétrey et al. ^{3,4}		
Niemi et al. ⁵		

²Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

³Ménétrey, Göttel, Pasin, et al., "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments", 2022.

⁴Ménétrey, Göttel, Khurshid, et al., "Attestation Mechanisms for Trusted Execution Environments Demystified", 2022.

⁵Niemi, Sovio, and Ekberg, "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work", 2022.

Related work	Architecture		
IETF RATS ²	Co-developed with DICE ³		
Ménétrey et al. ^{4,5}	Use RATS		
Niemi et al. ⁶	Adapted from RATS		

²Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

³Trusted Computing Group, DICE Attestation Architecture, 2021.

⁴Ménétrey, Göttel, Pasin, et al., "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments", 2022.

⁵Ménétrey, Göttel, Khurshid, et al., "Attestation Mechanisms for Trusted Execution Environments Demystified", 2022.

⁶Niemi, Sovio, and Ekberg, "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work", 2022.

Related work	Architecture	Mapping to group 1	
IETF RATS ²	Co-developed with DICE ³	No	
Ménétrey et al. ^{4,5}	Use RATS	Inaccurate for SGX	
Niemi et al. ⁶	Adapted from RATS	Very high level for SGX	

²Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

³Trusted Computing Group, DICE Attestation Architecture, 2021.

⁴Ménétrey, Göttel, Pasin, et al., "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments", 2022.

⁵Ménétrey, Göttel, Khurshid, et al., "Attestation Mechanisms for Trusted Execution Environments Demystified", 2022.

⁶Niemi, Sovio, and Ekberg, "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work", 2022.

Related work	Architecture	Mapping to group 1	Mapping to group 2	
IETF RATS ²	Co-developed with DICE ³	No	No	
Ménétrey et al. ^{4,5}	Use RATS	Inaccurate for SGX	No	
Niemi et al. ⁶	Adapted from RATS	Very high level for SGX	High level summary for CCA	

²Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

³Trusted Computing Group, *DICE Attestation Architecture*, 2021.

⁴Ménétrey, Göttel, Pasin, et al., "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments", 2022.

⁵Ménétrey, Göttel, Khurshid, et al., "Attestation Mechanisms for Trusted Execution Environments Demystified", 2022.

⁶Niemi, Sovio, and Ekberg, "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work", 2022.

Related work	Architecture	Mapping to group 1	Mapping to group 2	Mapping to group 3
IETF RATS ²	Co-developed with DICE ³	No	No	No
Ménétrey et al. ^{4,5}	Use RATS	Inaccurate for SGX	No	No
Niemi et al. ⁶	Adapted from RATS	Very high level for SGX	High level summary for CCA	No

²Birkholz et al., Remote ATtestation procedureS (RATS) Architecture, 2023.

³Trusted Computing Group, DICE Attestation Architecture, 2021.

⁴Ménétrey, Göttel, Pasin, et al., "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments", 2022.

⁵Ménétrey, Göttel, Khurshid, et al., "Attestation Mechanisms for Trusted Execution Environments Demystified", 2022.

⁶Niemi, Sovio, and Ekberg, "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work", 2022.

Arm CCA Attestation Architecture Overview

Outline

- Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Arm CCA Evidence Generation

Formal Analysis in ProVerif

- Assumptions
 - Verifier has preconfigured pub(CPAK) for signature verification
 - Secure channel between HES and RMM to transport the RAK key pair
- Integrity of Platform and Realm Evidence

```
query data: bitstring;
event (accepted(data)) ==> inj-event (sent(data)).
(1)
```

Outline

- 2 Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Claimed TCB

Figure 5.1. Trust Boundaries for TDX

TCB Fixed

Figure: Old

Figure 1 Trust Boundaries for TDX

Figure: Updated

SVN for TD?

Provisioning phase

Provisioning phase

Structure of Remote Evidence (TD Quote)

Provisioning phase

Structure of Remote Evidence (TD Quote)

Structure of AK cert

Provisioning phase

Structure of Remote Evidence (TD Quote)

Structure of AK cert

KDF for Local Evidence

Outline

- 2 Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE

Order of QE selection

Chosen based on platform capabilities (not by app owner)

- Perspective 1
 - 1. DCAP QE (qe3)
 - 2. SCONE QE + EPID QE
 - 3. EPID QE
- Perspective 2
 - 1. DCAP QE (qe3)
 - 2. EPID QE
 - 3. SCONE QE (can use only if platform ID is known)
- Perspective 3
 - Everything (out of EPID, DCAP, SCONE Quote) that Platform 1 supports is sent to the CAS. So order is not important. CAS decides based on the policy.
 - food for thought: what do we gain?
 - unnecessary overhead without any apparent gain

LA vs. RA

When is a property attested?

Outline

- Problem Statement
- 2 Contributions
 - Holistic View
 - TEE-agnostic Architecture
 - Mappings
 - Formal Specs
 - Design and Security Issues: TDX
 - Design and Security Issues: SCONE
- Summary

ca. 1500 pages of specs of TDX

ca. 1500 pages of specs of TDX

Inherits specs from SGX (SDM alone ca. 5000 pages)

ca. 1500 pages of specs of TDX

Inherits specs from SGX (SDM alone ca. 5000 pages)

Specs in natural language

ca. 1500 pages of specs of TDX

Inherits specs from SGX (SDM alone ca. 5000 pages)

Specs in natural language

Closed-source nature of SCONE

• Towards TEE-agnostic *verification* infrastructure for transparency and interoperability

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- TDX: how do we precisely express trust boundaries?

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- TDX: how do we precisely express trust boundaries?
- SCONE: when do we say that something is attested?

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- TDX: how do we precisely express trust boundaries?
- SCONE: when do we say that something is attested?
- Lots of work required for precise specification and standardization for understanding underlying assumptions

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- TDX: how do we precisely express trust boundaries?
- SCONE: when do we say that something is attested?
- Lots of work required for precise specification and standardization for understanding underlying assumptions
 - Integration with TLS (RA-TLS)

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- TDX: how do we precisely express trust boundaries?
- SCONE: when do we say that something is attested?
- Lots of work required for precise specification and standardization for understanding underlying assumptions
 - Integration with TLS (RA-TLS)
 - Integration with vTPM

Key References

Birkholz, Henk et al. Remote ATtestation procedureS (RATS) Architecture. RFC 9334. Jan. 2023. DOI: 10.17487/RFC9334. URL: https://www.rfc-editor.org/info/rfc9334.

Ménétrey, Jämes, Christian Göttel, Anum Khurshid, et al. "Attestation Mechanisms for Trusted Execution Environments Demystified". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13272 LNCS (2022), pp. 95–113. ISSN: 16113349. DOI: 10.1007/978-3-031-16092-9_7.

Ménétrey, Jämes, Christian Göttel, Marcelo Pasin, et al. "An Exploratory Study of Attestation Mechanisms for Trusted Execution Environments". In: 5th Workshop on System Software for Trusted Execution (SysTEX 2022). 2022. URL: https://systex22.github.io/papers/systex22-final79.pdf.

Niemi, Arto, Sampo Sovio, and Jan Erik Ekberg. "Towards Interoperable Enclave Attestation: Learnings from Decades of Academic Work". In: Conference of Open Innovation Association, FRUCT. Vol. 2022-April. IEEE Computer Society, 2022, pp. 189–200. ISBN: 9789526924472. DOI: 10.23919/FRUCT54823.2022.9770907.

Trusted Computing Group. DICE Attestation Architecture. Tech. rep. 2021. URL:

Call to Action

- Get involved: https://github.com/CCC-Attestation/formal-spec-TEE
- Additional information: link here
- Specify your attestation designs using presented architecture and proposed formalism

