
Formalizing Hardware Security Mechanisms

Pierre Wilke, Matthieu Baty, Guillaume Hiet, Arnaud Fontaine, Alix Trieu

CIDRE, CentraleSupélec Rennes, Inria, ANSSI

March 29th, 2023

Formalizing Hardware Security Mechanisms March 29th, 2023 1 / 25

Stack of abstractions

High-level programming language
C, Java, OCaml. . .

Operating System
CertiKOS, seL4, ProvenCore. . .

Instruction Set Architecture
Sail, ARM, RockSalt (x86), . . .

Micro-architecture
Verilog, VHDL, Chisel, Lava, Cava,

Bluespec, Kôika. . .

Goal : implement and prove hardware
security mechanisms

Examples :

• shadow stack
• memory protection
• privilege levels
• . . .

Work mainly done by Matthieu Baty,
Ph.D. student in CIDRE

Formalizing Hardware Security Mechanisms March 29th, 2023 2 / 25

Outline

1 Kôika

2 Security mechanism : A hardware shadow stack

3 A program transformation to facilitate proofs

Formalizing Hardware Security Mechanisms March 29th, 2023 3 / 25

Outline

1 Kôika

2 Security mechanism : A hardware shadow stack

3 A program transformation to facilitate proofs

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 4 / 25

Hardware Design Workflow

Hardware
Description
Language

high-level
Verilog, VHDL

Netlist

logic gates
FPGA-independent

Bitstream

FPGA-specific

Synthesis Mapping

Placing and routing

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 4 / 25

Kôika 1

A Hardware Description Language embedded in Coq.

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler
simulation

synthesis

https://github.com/mit-plv/koika
Based on Bluespec (MEMOCODE’04, notion of atomic rules, compiles into Verilog)
1. The Essence of BlueSpec, PLDI’20, Thomas Bourgeat et al.

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 5 / 25

https://github.com/mit-plv/koika

Kôika syntax and semantics

Actions a ::= ~b | x | skip
| read r | write r a
| let x = a in a
| if a then a else a
| f (a, . . . ,a) | abort

Registers r
Variables x

Program P ::= [rule name = a]∗
+ schedule =−−−→name

A program is a set of rules.
Rules manipulate registers.

One-rule-at-a-time (ORAAT) semantics :
at each cycle, one rule is picked non-
deterministically and executed.

But, in the generated circuit, all rules run in
parallel.
The compiler introduces control logic to :

• determinize the semantics, by
following a user-provided schedule ;

• rule out parallel behaviors that would
violate ORAAT semantics.

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 6 / 25

Kôika - examples

Register reads see the value of the registers at the beginning of the cycle.
Register writes are only committed at the end of the cycle (once all rules have run).

rule increment =
let v = read r in
write r (v + 1)

r + 1 r ′
v v+1

rule swap =
write r1 (read r2);
write r2 (read r1)

r1

r2

r1′

r2′

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 7 / 25

Kôika - examples : double write

A rule that writes twice to the same register leads to a conflict.

rule doublewrite =
write r1 1;
write r2 3;
write r2 5

Conflict !

r1

r2

r1′

r2′

1

5

3

All effects of that rule are discarded.
In particular, the write to r1 is also discarded.

Conflict detected at run-time (may depend on conditions).

• in Kôika semantics : keep track of all writes performed within this cycle, detect if double-write
• in the compiled circuit : add control logic that detects these cases

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 8 / 25

Kôika - examples with multiple rules

rule W =
write r1 2

rule R =
write r2 (read r1 + 1)

If our schedule is [W ;R] :

• rule R will be discarded, i.e. will not fire in the same cycle as rule W
• because according to ORAAT, rule R should read the value written by rule W
• that’s impossible because register writes are only made visible at the end of a cycle

within the same cycle, a read may not follow a write on the same register.

If our schedule is [R;W] :

• Running rules R and W in parallel, using the values at the beginning of the cycle for reads, is
equivalent to running rule R, followed by rule W .

• Both rules will fire at each cycle.

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 9 / 25

Kôika – conflict summary

In summary, within one cycle :

• there cannot be two writes on the same register. The rule performing the second write is
entirely discarded.

(could be the same rule)

• there cannot be a read on a register that has been written to by a previous rule. The rule
performing the read is entirely discarded.

That’s not entirely true : for performance, Kôika actually allows these situations where data written
in registers may flow from one rule to the next within the same cycle, using ports. For simplicity, we
ignore ports in that presentation.

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 10 / 25

Kôika semantics, formally

The semantics of a rule, i.e. an action a is given by :

JaK(R,L) =

{
Log l if a succeeds and produces a log l
Fail otherwise

A log is a list of read/write events on registers, e.g. [write r1 2;read r2;write r2 3]

• L is the log of events that occurred within the same cycle, in all previous rules.
• l is the log of events produced by this rule

The semantics of a schedule is given by (L,sch) ⇓ L′ :

JaK(R,L) = Log l (L + +l,sch) ⇓ L′

(L,a :: sch) ⇓ L′
JaK(R,L) = Fail (L,sch) ⇓ L′

(L,a :: sch) ⇓ L′

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 11 / 25

Kôika semantics, formally, cont’d

The semantics of actions is given by :

Γ ` (l,a) ↓(L,R) (l ′,v)

• Γ : environment for variables bound by
let ... in

• l , l ′ : initial and final action logs
• L : previous rules’ log
• R : register values at the beginning of

the cycle
• v : value computed by the action

(wr , r ,∗) /∈ L

Γ ` (l, read r) ↓ (l + +[(read , r)],R(r))

Γ ` (l,a) ↓ (l ′,v) (∗, r ,∗) /∈ (L + +l ′)

Γ ` (l,write r a) ↓ (l ′+ +[(write, r ,v)], tt)

(Semantics of other types of actions are far less surprising for PL people)

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 12 / 25

Kôika semantics, summary

• Kôika programs are sets of rules, together with a scheduler
• Rules update registers
• All rules execute during each cycle, however :

• each rule may or may not contribute to the next state of registers, depending on whether conflicts
appear

• Conflicts appear when :
• reading a register r after a write on that register has occurred in a previous rule
• writing on register r after a read or write has occurred

• Quite hard to predict whether a conflict will happen, hence whether a rule will succeed or fail...

Formalizing Hardware Security Mechanisms Kôika March 29th, 2023 13 / 25

Outline

1 Kôika

2 Security mechanism : A hardware shadow stack

3 A program transformation to facilitate proofs

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 14 / 25

A RISC-V processor in Kôika

Kôika developers provide an example model of a RISC-V processor

• 4-stage processor (Fetch, Decode, Execute, Writeback)
• RV32I
• unprivileged specification, no interrupts
• under 1000 lines of Kôika code
• runs on an actual FPGA board

Back to what we wanted to do : hardware security mechanisms

• this RISC-V processor looks promising
• we can modify it and implement our security mechanism
• it seems that we have all we need to verify security properties

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 14 / 25

Hardware security mechanisms

A hardware security mechanism is

• a hardware component (e.g. memory protection unit, shadow stack, privilege levels)
• that enforces a security property (confidentiality, integrity, availability)

So far, we focused on implementing a shadow stack (à la Intel CET)

• protects against buffer overflows that overwrite the return address
• enforces (part of) control-flow integrity (only backward edges)

• i.e., when we execute a ret instruction, we always jump back to (just after) our call site

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 15 / 25

Shadow stacks

Principle :

• when a call instruction is encountered, push next(pc) on the shadow stack
• when a ret instruction is encountered, pop addr_ss from the shadow stack and pop addr

from the normal stack
• If addr_ss == addr, continue
• Else, we detect a violation

f1 parameters
f1 @ret
f1 locals

f2 parameters
f2 @ret
f2 locals

f1 @ret
f2 @ret

Stack Shadow Stack

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 16 / 25

Shadow stack

Implementation :

• new memory region for our shadow stack
• instrument the Execute stage to push onto and pop from the shadow stack when needed
• when a violation is detected, we halt the processor

What we want to prove
• Return to a modified return address⇒ halt processor

• A bit more precisely :
If the instruction about to be executed in the pipeline is a ret 2,
and the address stored at the top of the shadow stack is different from the address to which we
are about to jump,
then the processor should be put in a halting state.

• Underflow or overflow of the shadow stack⇒ halt processor
• Otherwise, behaviour preserved

2. In RISC-V, ret is actually jr ra, i.e. jump to address contained in register ra.
Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 17 / 25

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler
simulation

synthesis

Security properties

Coq proof?

Not so easy...

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 18 / 25

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler
simulation

synthesis

Security properties

Coq proof?

Not so easy...

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 18 / 25

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler
simulation

synthesis

Security properties

Coq proof?

Not so easy...

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 18 / 25

Problems with proofs on Kôika models

Most tactics take minutes, hours, or do not terminate, or consume all my (32GB) RAM.
Not sure exactly why, probably a combination of :

• heavy use of dependent types
• type class resolution
• the processor model is a quite large Coq term
• as we saw before, Kôika semantics are quite complex
• problem of partial evaluation

Attempts :

• write an inductive semantics instead of the existing executable semantics
now inversion is slow

• write an alternative semantics with fewer dependent types did not seem to help much
• modular reasoning on smaller Kôika actions is not straightforward

• the semantics is really about interactions between rules
• the rules we write undergo typing and desugaring before we execute them

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 19 / 25

Proofs on Kôika models : a new approach

Kôika’s semantics is very different from mainstream programming languages (especially with
conflicts and rule cancellation).
Somewhat counter-intuitively, perhaps transforming our high-level Kôika model into a lower-level
representation would facilitate our proofs.

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler
simulation

synthesis

Lower-level representation Security properties
Coq proof?

verified transformation

Formalizing Hardware Security Mechanisms Security mechanism : A hardware shadow stack March 29th, 2023 20 / 25

Outline

1 Kôika

2 Security mechanism : A hardware shadow stack

3 A program transformation to facilitate proofs

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 21 / 25

Lower-level representation

Our target is a representation of how register values are updated during a cycle, i.e. a mapping from
each register in our model to an expression that describes its value at the end of a cycle.

e ::= v variable(∈ V)
| c constant
| r register
| if e then e else e
| f (~e)

llr ::= {vars : V → e ; final_values : reg_t→ V}

The compilation from a Kôika model to this lower-level representation encodes all conflict detection
inside these expressions.
Should be easier to reason about.

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 21 / 25

Lower-level representation (LLR)

Now the Coq interpretation of a cycle of the processor quickly produces a large set of variables.

Because all control logic (conflict detection, data forwarding) is explicit, the expressions associated
to variables are quite deep and cannot be directly computed within Coq in reasonable time.

We developed a range of program transformations akin to compiler optimizations on LLRs :

• constant folding (3 + 4 7)
• replace variable v with constant c (with a manual proof obligation that JvK c)
• replace sub-expression e with another sub-expression e′ (with a manual proof obligation that

e ≡ e′)
• replace register r with its value at the beginning of the cycle
• exploit partial information about register values (e.g. bits 6:0 of register inst are 0001101)
• ...

It’s up to the (human) prover to apply each program transformation manually.

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 22 / 25

Current state of our work

ProofsD The halt state is a sink stateD Shadow stack underflows⇒ haltD Shadow stack overflows⇒ haltD Shadow stack violation⇒ haltD No violation⇒ identical behavior

Simulation (verilator, cuttlesim) : we observe that the shadow stack works as expected on a few
hand-written examples

Synthesis : the resulting processor runs on an actual FPGA board

Submitted to CSF’23

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 23 / 25

Conclusion

Kôika model
+ Shadow stack

high-level, atomic rules

Verilog model
low-level, everything parallel

verified compiler

LLR 0 LLR 1 LLR ... LLR n

Security properties

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 24 / 25

Perspectives (us... and you!)

Next :

• other hardware security mechanism (e.g. memory protection, privilege levels)
• functional correctness wrt. Sail semantics
• try to make proofs more modular (how?)

Hiring PhDs and post-docs in CentraleSupélec, Rennes !
SUSHI team - SecUrity at the Software Hardware Interface (starting
June-Sep 2023)
Topics : formal models of processors, security mechanisms, proof methodology, ...

Contact :

! pierre.wilke@centralesupelec.fr

! guillaume.hiet@centralesupelec.fr

Formalizing Hardware Security Mechanisms A program transformation to facilitate proofs March 29th, 2023 25 / 25

pierre.wilke@centralesupelec.fr
guillaume.hiet@centralesupelec.fr

	Kôika
	Security mechanism: A hardware shadow stack
	A program transformation to facilitate proofs

