
Background Goals Workflow Use Case

Exploration of Fault Effects on Formal RISC-V Microarchitecture
Models∗

Simon Tollec1, Mihail Asavoae1, Damien Couroussé2, Karine Heydemann3,4

and Mathieu Jan1

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

3Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France
4Thales DIS, France

GT MFS, March 29, 2023

∗Published in 2022 Workshop on Fault Diagnosis and Tolerance in Cryptography

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 1 / 25

Background Goals Workflow Use Case

1 Background on Fault Injection (FI) Attacks

2 Motivating Example and Goals

3 Contributions: Formal Verification Workflow

4 Use Case: CV32E40P and VerifyPIN

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 2 / 25

Background Goals Workflow Use Case

1 Background on Fault Injection (FI) Attacks

2 Motivating Example and Goals

3 Contributions: Formal Verification Workflow

4 Use Case: CV32E40P and VerifyPIN

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 3 / 25

Background Goals Workflow Use Case

Studying FIs on a Processor Executing a SW Program

Fault injection (FI) attacks
• Applying abnormal execution conditions

- high temperature
- electromagnetic radiation

• Induce computational errors
• Lead to an undesired behaviour

Create vulnerabilities in the system
• Retrieve sensitive data
• Acquire execution privilege

Studying fault injections
• Develop methodologies to analyze

systems’ security
• Develop countermeasures

Photo credit: https://eshard.com

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 4 / 25

https://eshard.com

Background Goals Workflow Use Case

Basic Flow of FIs when Targetting a Secure Embedded Software

Physical
Level

Timing Power EM Heating Light

Circuit
Level

Logic Gates Memory Cells Flip Flops

1- Fault Injection

μ-Architecture
Level Instruction

Memory

Data Mem

Register File

Boot ROM

Status Regs

DatapathControl

2- Fault Manifestation

3- Fault Propagation

I-
Fe

tc
h

Decode

D
-F

et
ch

Execute

St
o

re

int verify(S,P){
 int r;
 if (S = P)

 r = 1;
 else

 r = 0;
 return r
}

1

2
3

4
5

1

2

3 4

5

S,P

r r

SP
Faulty
Control Flow
and/or
Data Flow

Application, OS, Firmware

Hardware
Layer

Software
Layer

4- Fault
Observation

Instruction Set Architecture (ISA) Layer

5- Fault
Exploitation

1- Fault Attack Design
- Fault Model
- Fault Exploitation Method
- Fault Injection Method

Faulty Bits

Electrical
Transients

Faulty
Instructions

Fig. 1. Anatomy of a typical fault attack on embedded software: The target of
fault injection is the hardware while the target of exploitation is the software.

the software execution through system output or a related side-
channel such as power consumption, cache-activity-related
timing, and performance counters.

B. Using Faults as a Hacking Tool

Figure 1 illustrates the steps and mechanisms involved in
a typical fault attack on embedded software. A fault attack
consists of two main phases, fault attack design and fault attack
implementation (Steps 1-5 in Fig. 1). In the design step, the
adversary analyzes the target to determine fault model (i.e,
an assumption on the faults to be injected), fault exploitation
method, and fault injection technique. For instance, an adver-
sary may intend to inject faults into several assets such as
an encryption program, a security-related verification code, a
memory transfer function, the processor state register, a system
call, the firmware, or configuration information of the target
device. The adversary may then exploit the fault effects on the
target asset for various attack objectives such as weakening the

security, bypassing security checks, intellectual property theft,
extracting the confidential data, privilege escalation, activating
debug modes, and disabling secure boot of the device.

The implementation phase is a combination of five steps:

1) Fault Injection: In this step, the adversary applies a
physical stress on the microprocessor to alter its physical
operating conditions and to induce hardware faults. The
applied physical stress can be in various forms such as
clock glitches, supply voltage glitches, electromagnetic
(EM) pulses, and laser shots.
To induce the desired faults, the adversary varies fault
timing and fault intensity. Fault timing specifies when
the physical stress is applied on the target processor.
Fault intensity is the degree of the physical stress by
which the microprocessor hardware is pushed beyond its
nominal operating conditions. The adversary controls the
fault intensity via fault injection parameters. For clock
glitching, shortening the length of the glitch increases
the fault intensity. It is controlled by glitch/pulse voltage
and length for voltage glitching, electromagnetic pulse
injection, and laser pulse injection. The laser and elec-
tromagnetic pulse injections also enable the adversary
to localize the fault intensity by controlling the shape,
size, and position of the injection probe.

2) Fault Manifestation: The circuit-level effect of fault
injection is creating electrical transients on the nets,
combinational gates, flip-flops, or memory cells. A fault
manifests at the micro-architecture level when the elec-
trical transients are captured into a memory cell or flip-
flop, and change its value.
The number of manifested faulty bits in the micro-
architecture level is correlated to the applied fault in-
tensity: A gradual change in the fault intensity causes a
gradual change in the manifested faults. We call this
relation biased fault behavior. This behavior is valid
independent of the used fault injection method, and it
enables the adversary to control the size (e.g, single-
byte) of the induced faults [9], [10], [11]. However,
tuning the fault intensity alone is not sufficient to control
the type (e.g, bit-set) and location (e.g, decode logic)
of the induced faults. The adversary’s control on the
fault type and location is also affected by the type and
precision of the fault injection equipment.
The biased fault behavior also allows the adversary
to find a critical fault intensity value, at which the
electrical transients become strong enough to cause fault
manifestation. That critical fault intensity value is called
fault sensitivity of the target hardware [12].

3) Fault Propagation: In this step, the effects of the
manifested faults are propagated to the software layer
through execution of faulty instructions. The next two
paragraphs briefly explain the mechanism behind fault
propagation.
Software security mechanisms are implemented as a
sequence of instructions executed by the microprocessor

Propagations of the FI in the system
• Different abstraction layers involved
• Circuit-level: describe the initial effect of the FI
• Software-level: observe the consequences of the fault

FIs’ effects depend on the executing context
• FIs can have no effect
• FIs can manifest after an unknown amount of time

Figure: Yuce, B., Schaumont, P., & Witteman, M. (2018). Fault
attacks on secure embedded software: Threats, design, and evaluation.
Journal of Hardware and Systems Security.

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 5 / 25

Background Goals Workflow Use Case

1 Background on Fault Injection (FI) Attacks

2 Motivating Example and Goals

3 Contributions: Formal Verification Workflow

4 Use Case: CV32E40P and VerifyPIN

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 6 / 25

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

What is the Prefetch Buffer (PFB)?
• Reduce latency due to memory accesses
• Store a small number of instructions in a FIFO
• Hardware optimization invisible at the SW level

Fault Effects in the Prefetch Buffer:
1. Immediate effect: replay the PFB instructions
2. Recurring effect: incorrect executing order of instructions
3. Long-term effect: corruption of the next branch target
➔ Resulting effect: a combination of all of these effects
➔ Strongly depends on the internal state of the µarchitecture.

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 7 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

What is the Prefetch Buffer (PFB)?
• Reduce latency due to memory accesses
• Store a small number of instructions in a FIFO
• Hardware optimization invisible at the SW level

Fault Effects in the Prefetch Buffer:
1. Immediate effect: replay the PFB instructions
2. Recurring effect: incorrect executing order of instructions
3. Long-term effect: corruption of the next branch target
➔ Resulting effect: a combination of all of these effects
➔ Strongly depends on the internal state of the µarchitecture.

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 7 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

This effect cannot be analyzed with:
• HW analysis: Difficult to give meaning to the wrong behavior

of the PFB
• SW analysis: Would not have detected the effect and is still

difficult to model a postreriori

Need to consider the SW and the HW together:
• HW → the execution platform and fault models
• SW → the semantics of FIs with the ISA

+ makes possible to interpret their consequences

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 8 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

What do we need to model the system?
• µArchitecture implementation details

• Data-path • Control-path

• Fault model

• Location
• Timing

• Effect
• Multiplicity

• Software program

• Security property

➔ Chosen system modeling level: Cycle-accurate, Word-level

Verification Techniques Requirements:
• Exhaustiveness: find corner case vulnerabilities (like PFB)

• Unrolling the system: observe the fault propagation

• Difficult to induce invariants: due to the transient nature of faults

➔ Bounded verification techniques: e.g., Bounded Model Checking

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 9 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

What do we need to model the system?
• µArchitecture implementation details

• Data-path • Control-path

• Fault model

• Location
• Timing

• Effect
• Multiplicity

• Software program

• Security property

➔ Chosen system modeling level: Cycle-accurate, Word-level

Verification Techniques Requirements:
• Exhaustiveness: find corner case vulnerabilities (like PFB)

• Unrolling the system: observe the fault propagation

• Difficult to induce invariants: due to the transient nature of faults

➔ Bounded verification techniques: e.g., Bounded Model Checking

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 10 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

Motivating Examples

Fault in the Prefetch Buffer:
illustrated on a RISC-V Core (IF stage)

RISC-V Core

IF Stage

Prefetch
Buffer

In
st

ru
ct

io
n
 M

e
m

addr

rdata 32 ID
EX

Fetch
FIFO

Image credit:
https://github.com/lowRISC/ibex

What do we need to model the system?
• µArchitecture implementation details

• Data-path • Control-path

• Fault model

• Location
• Timing

• Effect
• Multiplicity

• Software program

• Security property

➔ Chosen system modeling level: Cycle-accurate, Word-level

Verification Techniques Requirements:
• Exhaustiveness: find corner case vulnerabilities (like PFB)

• Unrolling the system: observe the fault propagation

• Difficult to induce invariants: due to the transient nature of faults

➔ Bounded verification techniques: e.g., Bounded Model Checking

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 11 / 25

https://github.com/lowRISC/ibex

Background Goals Workflow Use Case

1 Background on Fault Injection (FI) Attacks

2 Motivating Example and Goals

3 Contributions: Formal Verification Workflow

4 Use Case: CV32E40P and VerifyPIN

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 12 / 25

Background Goals Workflow Use Case

Contributions

Goal:
Formal modeling of the SW/HW system to analyze microarchitectural fault effects on the
software security

Contributions: Automated formal modeling of HW and SW
➔ For exploring microarchitectural fault effects on SW security
➔ For analyzing the robustness of HW or SW countermeasures

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 13 / 25

Background Goals Workflow Use Case

Transition System to model HW, SW and FIs

Modeling Steps

— Hardware

— Software
— Fault Injection

Create path to unreachable states

Create new states

— Vulnerability

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 14 / 25

Background Goals Workflow Use Case

Transition System to model HW, SW and FIs

Modeling Steps

— Hardware
— Software

— Fault Injection

Create path to unreachable states

Create new states

— Vulnerability

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 14 / 25

Background Goals Workflow Use Case

Transition System to model HW, SW and FIs

Modeling Steps

— Hardware
— Software
— Fault Injection

Create path to unreachable states

Create new states

— Vulnerability

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 14 / 25

Background Goals Workflow Use Case

Transition System to model HW, SW and FIs

Modeling Steps

— Hardware
— Software
— Fault Injection

Create path to unreachable states

Create new states

— Vulnerability

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 14 / 25

Background Goals Workflow Use Case

Workflow: Modeling Steps

Inputs / Outputs

Vulnerability
Property

Binary
Program

Fault
Model

RAM

CPU

1 0 1

0 1 0

.SMTC

.SMTC

.ELF

.VCD

.V

.V

φ

HW
Design
(RTL)

Proof or
Counter-Examples

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 15 / 25

Background Goals Workflow Use Case

Workflow: Modeling Steps

Hardware Modeling

Vulnerability
Property

Binary
Program

Fault
Model

RAM

CPU

1 0 1

0 1 0

.SMTC

.SMTC

.ELF

.VCD

.V

.V

φ

HW
Design
(RTL)

Proof or
Counter-Examples

HW Modeling

Yosys

.SMT-LIB

HW Model

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 16 / 25

Background Goals Workflow Use Case

Workflow: Modeling Steps

Fault Modeling

Vulnerability
Property

Binary
Program

Fault
Model

RAM

CPU

1 0 1

0 1 0

.SMTC

.SMTC

.ELF

.VCD

.V

.V

φ

HW
Design
(RTL)

Proof or
Counter-Examples

HW Modeling

Yosys

.SMT-LIB

HW Model

Fault2SMT

Fault

Modeling

HW Model
+ Fault

Controllers

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 17 / 25

Background Goals Workflow Use Case

Workflow: Modeling Steps

Software Modeling

Vulnerability
Property

Binary
Program

Fault
Model

RAM

CPU

1 0 1

0 1 0

.SMTC

.SMTC

.ELF

.VCD

.V

.V

φ

HW
Design
(RTL)

Proof or
Counter-Examples

HW Modeling

Yosys

.SMT-LIB

HW Model

.SMTC

ELF2SMT

SW Modeling
SW Model

1 0 1

0 1 0

Fault2SMT

Fault

Modeling

HW Model
+ Fault

Controllers

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 18 / 25

Background Goals Workflow Use Case

Workflow: Modeling Steps

Property Specification

Vulnerability
Property

Binary
Program

Fault
Model

RAM

CPU

1 0 1

0 1 0

.SMTC

.SMTC

.ELF

.VCD

.V

.V

φ

HW
Design
(RTL)

Proof or
Counter-Examples

HW Modeling

Yosys

.SMT-LIB

HW Model

.SMTC

ELF2SMT

SW Modeling
SW Model

1 0 1

0 1 0

Fault2SMT

Fault

Modeling

HW Model
+ Fault

Controllers

BMC Driver

Yosys

-SMTBMC

SMT Solver

Yices

Verification

Process

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 19 / 25

Background Goals Workflow Use Case

1 Background on Fault Injection (FI) Attacks

2 Motivating Example and Goals

3 Contributions: Formal Verification Workflow

4 Use Case: CV32E40P and VerifyPIN

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 20 / 25

Background Goals Workflow Use Case

Hardware Part

CV32E40P (RISCY)

PC

WB

IF
ID

ID
EX

EX
WB

IM

RF

EX

WB

IM

RF

EX

RF

CV32E40P

register
file

DIA

rB
rA DA

DB
DC

DIB

rC

CSROpA

OpB
RD

ALUOpB

OpC

RD

OpA

MULT
OpA

OpB RD

OpC

prefetch
buffer decoder

controller

aligner

LSU
OpA

OpB

RD
OpC

compress
decoder

hwloop
regs

sleep unit

interrupt interfacedebug interface

in
st

ru
ct

io
n

in
te

rf
ac

e

da
ta

in
te

rf
ac

e

• Standard version [CV32E40P]
• Hardened version [Chamelot, 2022]

• Control flow integrity
• Code integrity
• Execution integrity

Microarchitectural Fault Model
• Single fault injection
• During the whole program

• Everywhere in the circuit
• Symbolic fault effect

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 21 / 25

Background Goals Workflow Use Case

Software Part

VerifyPIN

userPIN

cardPIN

VerifyPIN

Authentication

Successful

Failed

• Standard version [Dureuil (FISSC), 2016]
• Versions implementing SW countermeasures

• Constant iteration number loop
• Inline function calls
• Duplication of critical tests

Compare {
 for (i = 0; i < 4; i++) {
 if (userPIN[i] != cardPIN[i])
 return false;
 return true;
}

VerifyPIN {
 authentification = false;
 if (tries > 0) {
 if (Compare()) {
 tries = 3;
 authentification = true;
 } else {
 tries--;
 }
 }
}

Security Property
• userPIN ̸= cardPIN =⇒ ¬ authenticated (∨ detected_attack)

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 22 / 25

Background Goals Workflow Use Case

Overview of the Results

Baseline CV32E40P + VerifyPIN with various countermeasures
• Many FI vulnerabilities have been found (∼ 59)
• Some of them already exist in the literature (exploiting the forwarding mechanism)
• Others highlight new effects (e.g., the Prefetch Buffer)

Baseline CV32E40P + VerifyPIN with the most countermeasures
• No fault injection permits bypassing the secure authentication was detected

Hardened CV32E40P + unprotected VerifyPIN
• No fault injection permits bypassing the secure authentication
• The hardware countermeasure is effective

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 23 / 25

Background Goals Workflow Use Case

Perspective and Conclusion

Performances
Use Case HW Size SW Length # FI locations Fault Effects userPIN & cardPIN (32 bits) Overall Run Time

Baseline CV32E40P 2.8 kGates 70 instr 15240 Symbolic Symbolic 12.9 h
Hardened CV32E40P 4.6 kGates 120 instr 22640 Symbolic Symbolic 25.0 h

Scaling up on more complex designs
• CV32E40P (RISCY) ∼ 3 KGates – 4-stage pipeline
• CVA6 (ARIANE) ∼ 10 KGates – 6-stage pipeline

Optimizations
• Modularity: Compose with fault effects is not easy
• Abstraction: Attacks in unused modules (e.g., Multiplication) may result in vulnerabilities.

Conclusion
• Need to consider the HW and the SW together
• Propose a workflow: model + verification

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 24 / 25

Background Goals Workflow Use Case

Questions ?

BMC Driver

Yosys

Yosys

-SMTBMC

Verification

Process

SMT Solver

Yices

HW Modeling

HW Model

.SMT-LIB

HW Model
+ Fault

Controllers
Fault

Modeling

.SMT-LIB

Fault2SMT

1 0 1

0 1 0

SW Model
SW Modeling

ELF2SMT
.SMTC

CPU
HW

Design
(RTL)

Fault
Model

.SMTC

.V

.V

RAM

1 0 1

0 1 0

φVulnerability
Property .SMTC

.ELF

Binary
Program

Proof or
Counter-Examples

.VCD

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 25 / 25

Experimental Results Bibliography

Fault Effects Exploration Results

The forwarding mechanism (known attack [Laurent, 2019])
• Retrieve sensitive last-read data from the memory
• Invert conditional branches

PC

WB

IF
ID

ID
EX

EX
WB

IM

RF

EX

WB

IM

RF

EX

RF

CV32E40P

register
file

DIA

rB
rA DA

DB
DC

DIB

rC

CSROpA

OpB
RD

ALUOpB

OpC

RD

OpA

MULT
OpA

OpB RD

OpC

prefetch
buffer decoder

controller

aligner

LSU
OpA

OpB

RD
OpC

compress
decoder

hwloop
regs

sleep unit

interrupt interfacedebug interface

in
st

ru
ct

io
n

in
te

rf
ac

e

da
ta

in
te

rf
ac

e

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 1 / 8

Experimental Results Bibliography

Fault Effects Exploration Results

Fault in the Prefetch Buffer
• Immediate one-time effect, e.g., replay the Prefetch Buffer instructions
• Immediate recurring effect, e.g., incorrect order of the (replayed) instructions
• Long-term effect, e.g., corruption of the next branch target

➔ Fault effects depend on the microarchitectural details and the execution context

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 2 / 8

Experimental Results Bibliography

Fault Effects Exploration Results

Fault in the Multiplier
• When a multi-cycle multiplication is in progress, other stages are stalled
• When a branch address is calculated in the ALU, the IF stage cannot be stalled by the EX stage

➔ Activating the ALU and MULT at the same time will result in instructions being ignored

IF
ID

ID
EX

ALU branch

MULT
OpA

OpB

OpC

prefetch
buffer

ID stage

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 3 / 8

Experimental Results Bibliography

Experimental Verification Techniques

Experimental characterization process

FI attacks on the targeted platform

observe

Memory, Register File

interprete

ISA fault model

ISA

Experimental works and their observations
• EMFI on ARMv7-M architecture [Riviere, 2015] → Instruction skip and Instruction replay
• EMFI on an 8-bit ATmega328P microcontroller [Menu, 2020] → Multiple Instruction skip
• EMFI on ARM Cortex-M3 [Moro, 2013] → Instruction replacement

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 4 / 8

Experimental Results Bibliography

Simulation Verification Techniques

Simulation Process

Fault Model

simulate

Results

analyze

System Specification Improved System

Simulation-based related works
• ARMORY: ARM-M binaries emulator for FI [Hoffmann, (ARMORY) 2021]

- Fault Model: Instruction skip ; Memory corruption ; Instruction replacement
• SimpliFI: gate-level simulation under FI (processor + software) [Grycel (SimpliFI), 2021]

- Fault Model: clock glitch (delayed clock signal)

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 5 / 8

Experimental Results Bibliography

References I

[Tollec, FDTC 2022] S. Tollec et al. (2022)
Exploration of Fault Effects on Formal RISC-V Microarchitecture Models
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)

[Riviere, 2015] L. Riviere et al. (2015)
High precision fault injections on the instruction cache of ARMv7-M architectures
IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

[Moro, 2013] N. Moro et al. (2013)
Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)

[Menu, 2020] A. Menu et al. (2020)
Experimental analysis of the electromagnetic instruction skip fault model
15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS)

[Trouchkine, 2020] T. Trouchkine et al. (2020)
Fault Injection Characterization on Modern CPUs
Information Security Theory and Practice

[Laurent, 2018] J. Laurent et al. (2018)
On the importance of analysing microarchitecture for accurate software fault models
21st Euromicro Conference on Digital System Design (DSD)

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 6 / 8

Experimental Results Bibliography

References II

[Laurent, 2019] J. Laurent et al. (2019)
Fault Injection on Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures
Design, Automation & Test in Europe Conference & Exhibition (DATE)

[Proy, 2019] J. Proy et al. (2019)
A first ISA-level characterization of EM pulse effects on superscalar microarchitectures: a secure software
perspective
Proceedings of the 14th International Conference on Availability, Reliability and Security

[CV32E40P] OpenHW group
CORE-V CV32E40P User Manual https://cv32e40p.readthedocs.io/en/latest/intro/

[Chamelot, 2022] T. Chamelot et al. (2022)
SCI-FI: control signal, code, and control flow integrity against fault injection attacks
Design, Automation & Test in Europe Conference & Exhibition (DATE)

[Dureuil (FISSC), 2016] L. Dureuil et al. (2016)
FISSC: A fault injection and simulation secure collection
International Conference on Computer Safety, Reliability, and Security

[Hoffmann, (ARMORY) 2021] M. Hoffmann et al. (2021)
ARMORY: Fully Automated and Exhaustive Fault Simulation on ARM-M Binaries
IEEE Transactions on Information Forensics and Security

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 7 / 8

https://cv32e40p.readthedocs.io/en/latest/intro/

Experimental Results Bibliography

References III

[Nasahl (SYNFI), 2022] P. Nasahl et al. (2022)
SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element
IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES)

[Grycel (SimpliFI), 2021] J. Grycel et al. (2021)
SimpliFI: Hardware Simulation of Embedded Software Fault Attacks
Cryptography

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann and Mathieu Jan

Exploration of Fault Effects on Formal RISC-V Microarchitecture Models∗ 8 / 8

	Background on Fault Injection (FI) Attacks
	Motivating Example and Goals
	Contributions: Formal Verification Workflow
	Use Case: CV32E40P and VerifyPIN
	Appendix
	Experimental Results
	Bibliography

