
Symbolic verification of security protocols
Modelling and verifying unlinkability

Stéphanie DELAUNE, Univ Rennes, CNRS, IRISA
GT Méthodes Formelles pour la Sécurité
March 29th, 2023

−→ joint work with D. Baelde, A. Debant, L. Hirschi, and S. Moreau

Cryptographic protocols everywhere !

• small programs designed to secure
communication (e.g. secrecy, authentication,
anonymity, . . .)

• use cryptographic primitives (e.g. encryption,
signature,)

It becomes more and more important to protect our privacy.

1

Cryptographic protocols everywhere !

• small programs designed to secure
communication (e.g. secrecy, authentication,
anonymity, . . .)

• use cryptographic primitives (e.g. encryption,
signature,)

It becomes more and more important to protect our privacy.

1

Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores:
• the information printed on your passport;
• a JPEG copy of your picture;
• . . .

The Basic Access Control (BAC) protocol is a key establishment
protocol that has been designed to protect our personnal data, and
to ensure unlinkability.

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]

2

Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores:
• the information printed on your passport;
• a JPEG copy of your picture;
• . . .

The Basic Access Control (BAC) protocol is a key establishment
protocol that has been designed to protect our personnal data, and
to ensure unlinkability.

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]

2

How cryptographic protocols can be attacked?

Logical attacks

• can be mounted even assuming perfect
cryptography, e.g. replay attack, man-in-the
middle attack, . . .

• subtle and hard to detect by “eyeballing” the
protocol

Example: A traceability attack on the BAC protocol

privacy
issue

The register - Jan. 2010

3

How cryptographic protocols can be attacked?

Logical attacks

• can be mounted even assuming perfect
cryptography, e.g. replay attack, man-in-the
middle attack, . . .

• subtle and hard to detect by “eyeballing” the
protocol

Example: A traceability attack on the BAC protocol

privacy
issue

The register - Jan. 2010

3

How cryptographic protocols can be attacked?

Logical attacks

• can be mounted even assuming perfect
cryptography, e.g. replay attack, man-in-the
middle attack, . . .

• subtle and hard to detect by “eyeballing” the
protocol

Example: A traceability attack on the BAC protocol

privacy
issue

The register - Jan. 2010

3

How to verify the absence of logical flaws?

• dissect the protocol and test their
resilience against well-known attacks;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach
formal symbolic verification using automatic/interactive tools

4

How to verify the absence of logical flaws?

• dissect the protocol and test their
resilience against well-known attacks;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach
formal symbolic verification using automatic/interactive tools

4

How to verify the absence of logical flaws?

• dissect the protocol and test their
resilience against well-known attacks;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach
formal symbolic verification using automatic/interactive tools

4

Formal (symbolic) verification in a nutshell

Two main tasks:

1. Modelling: protocols, security properties, and the attacker;
2. Verifying: designing verification algorithms and tools.

−→ this talk: a focus on unlinkability

5

Some success stories (mostly related to reachability properties)

ProVerif

[Blanchet, 01] [Meier et al., 13]

Sapic+

[Cheval et al., 22]

———
Verified models and reference implementations for
TLS 1.3 [Bhargavan et al., 17]

A formal security analysis of the EMV Standard
using Tamarin (Break, Fix, and Verify)

[Basin et al., 2020]

A comprehensive, formal and automated analysis
of the EDHOC protocol [Jacomme et al, 23]

6

Some success stories (mostly related to reachability properties)

ProVerif

[Blanchet, 01] [Meier et al., 13]

Sapic+

[Cheval et al., 22]

———
Verified models and reference implementations for
TLS 1.3 [Bhargavan et al., 17]

A formal security analysis of the EMV Standard
using Tamarin (Break, Fix, and Verify)

[Basin et al., 2020]

A comprehensive, formal and automated analysis
of the EDHOC protocol [Jacomme et al, 23]

6

Some success stories (mostly related to reachability properties)

ProVerif

[Blanchet, 01] [Meier et al., 13]

Sapic+

[Cheval et al., 22]

———
Verified models and reference implementations for
TLS 1.3 [Bhargavan et al., 17]

A formal security analysis of the EMV Standard
using Tamarin (Break, Fix, and Verify)

[Basin et al., 2020]

A comprehensive, formal and automated analysis
of the EDHOC protocol [Jacomme et al, 23]

6

What about unlinkability (in the symbolic setting)?

Actually, existing tools like ProVerif and Tamarin are not suitable
to analyse unlinkability, and therefore few formal proofs exist in the
unbounded setting.

• [Chatzikokolakis et al., 2010]: sufficient conditions checkable
using ProVerif that allows one to establish unlinkability for a
simple class of protocols (single-step protocols).

−→ their notion of unlinkability is rather weak

• [Arapinis et al., 2010]: a formal definition of unlinkability, and
a manual proof of unlinkability for a fixed version of the
e-passport protocol. −→ this result is wrong

• [Bhargavan et al., 2022]: a symbolic analysis of privacy for
TLS 1.3 with Encrypted Client Hello

−→ several encodings tricks are used.
7

Part I

Modelling: protocols, the attacker,
and unlinkability

8

Running example: Basic Hash protocol

• k is a long-term secret
key shared between the
tag and the reader;

• each tag has its own
key k.

9

Protocols as processes

−→ a programming language with constructs for concurrency and
communication (applied-pi calculus [Abadi & Fournet, 01])

P, Q := 0 null process
| in(c, x); P input
| out(c, M); P output
| new n; P name generation
| if M = N then P else Q conditional
| !P replication
| (P | Q) parallel composition
| . . .

10

Messages/Computations as terms

Terms are built over a set of names N (private), and function
symbols Σ (public) equipped with an equational theory E.

Example:

Σ = {senc, sdec} with E = {sdec(senc(x , y), y) = x}.

Let Φ = {w1 7→ senc(s, k);w2 7→ k}. R = sdec(w1,w2) is a recipe
to compute s. Indeed, we have that RΦ =E s.

11

Going back to Basic Hash

Mesages/Computations as terms

• Σ = {h, 〈 〉, proj1, proj2};
• E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2}.

Protocol as a process

• T(k) = new n; out(c, 〈n, h(n, k)〉).
• R(k) = in(c, y); if h(proj1(y), k) = proj2(y)

then out(c, ok)
else out(c, ko).

Then, the whole system can be written as follows:

! new k;
(

! R(k) | ! T(k)
)

12

Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ)

multiset of processes frame = knowledge of the attacker

————————

Out ({out(c, M); P}] P; Φ) out(c,wi)−−−−−−→ ({P}] P; Φ ∪ {wi 7→ M})
with i = |Φ|

Then ({if M1 = M2 then P else Q}] P; Φ) τ−→ ({P}] P; Φ)
when M1 =E M2

In ({in(c, x); P}] P; Φ) in(c,R)−−−−→ ({P{x 7→ RΦ}}] P; Φ)
. . .

13

Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ)

multiset of processes frame = knowledge of the attacker

————————

Out ({out(c, M); P}] P; Φ) out(c,wi)−−−−−−→ ({P}] P; Φ ∪ {wi 7→ M})
with i = |Φ|

Then ({if M1 = M2 then P else Q}] P; Φ) τ−→ ({P}] P; Φ)
when M1 =E M2

In ({in(c, x); P}] P; Φ) in(c,R)−−−−→ ({P{x 7→ RΦ}}] P; Φ)
. . .

13

Trace equivalence

Trace equivalence between configurations: K ≈t K ′.
For any execution trace K tr−→ (P; Φ) there exists an execution
K ′ tr−→ (P ′; Φ′) such that Φ ∼s Φ′ (and conversely)

Static equivalence between frames: Φ ∼s Φ′.
Any test that holds in Φ also holds in Φ′ (and conversely).

Example:
{w1 7→ k;w2 7→ 〈n, h(n, k)〉} 6∼s {w1 7→ k;w2 7→ 〈n′, h(n′, k ′)〉}

−→ with the test h(proj1(w2), w1) ?= proj2(w2).

{w1 7→ 〈n1, h(n1, k)〉; w2 7→ 〈n2, h(n2, k)〉}
∼s

{w1 7→ 〈n′
1, h(n′

1, k)〉; w2 7→ 〈n′
2, h(n′

2, k ′)〉}

14

Trace equivalence

Trace equivalence between configurations: K ≈t K ′.
For any execution trace K tr−→ (P; Φ) there exists an execution
K ′ tr−→ (P ′; Φ′) such that Φ ∼s Φ′ (and conversely)

Static equivalence between frames: Φ ∼s Φ′.
Any test that holds in Φ also holds in Φ′ (and conversely).

Example:
{w1 7→ k;w2 7→ 〈n, h(n, k)〉} 6∼s {w1 7→ k;w2 7→ 〈n′, h(n′, k ′)〉}

−→ with the test h(proj1(w2), w1) ?= proj2(w2).

{w1 7→ 〈n1, h(n1, k)〉; w2 7→ 〈n2, h(n2, k)〉}
∼s

{w1 7→ 〈n′
1, h(n′

1, k)〉; w2 7→ 〈n′
2, h(n′

2, k ′)〉}

14

Trace equivalence

Trace equivalence between configurations: K ≈t K ′.
For any execution trace K tr−→ (P; Φ) there exists an execution
K ′ tr−→ (P ′; Φ′) such that Φ ∼s Φ′ (and conversely)

Static equivalence between frames: Φ ∼s Φ′.
Any test that holds in Φ also holds in Φ′ (and conversely).

Example:
{w1 7→ k;w2 7→ 〈n, h(n, k)〉} 6∼s {w1 7→ k;w2 7→ 〈n′, h(n′, k ′)〉}

−→ with the test h(proj1(w2), w1) ?= proj2(w2).

{w1 7→ 〈n1, h(n1, k)〉; w2 7→ 〈n2, h(n2, k)〉}
∼s

{w1 7→ 〈n′
1, h(n′

1, k)〉; w2 7→ 〈n′
2, h(n′

2, k ′)〉}
14

Modelling unlinkability using trace equivalence

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]

−→ the real system should be equivalent to the ideal one (from
the point of view of the attacker).

. . .

?≈t
. . .

many sessions
for each identity

only one session
for each identity

15

Modelling unlinkability using trace equivalence

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]

−→ the real system should be equivalent to the ideal one (from
the point of view of the attacker).

. . .

?≈t
. . .

many sessions
for each identity

only one session
for each identity

15

Modelling unlinkability (1th attempt)

For single-step protocols, we may consider the following
equivalence:

! new k; ! T (k) ≈t ! new k; T (k)

−→ This approach was used in [Chatzikokolakis et al., 2010] to
establish unlinkability for BH and OSK protocols.

Example: OSK protocol

• h and g are two hash
functions;

• k is updated - with h(k) -
after a successful
execution on both sides.

16

Modelling unlinkability (1th attempt)

For single-step protocols, we may consider the following
equivalence:

! new k; ! T (k) ≈t ! new k; T (k)

−→ This approach was used in [Chatzikokolakis et al., 2010] to
establish unlinkability for BH and OSK protocols.

Example: OSK protocol

• h and g are two hash
functions;

• k is updated - with h(k) -
after a successful
execution on both sides.

16

Attack on the OSK protocol

Tags are proved unlinkable in [Chatzikokolakis et al., 2010] but
there is an attack !

kT ← k
Tag

kR ← k
Reader

g(k)

kT ← h(k) g(h(k))

kT ← h2(k) kR ← h2(k); ok

g(k)

error

Keypoint #1: modelling the reader is important. 17

Modelling unlinkability (2th attempt)

−→ definition first proposed by [Arapinis et al., CSF’10] (but for
another notion of equivalence)

! new k;
(

! R(k) | ! T(k)
)
≈t ! new k;

(
R(k) | T(k)

)

This definition is:

• suitable to analyse e.g. e-passport protocols, and many other
stateless protocols;

• the one we used in our work [Hirschi, Baelde & D., SP’16 &
JCS’19].

18

Going back to Basic Hash protocol (a stateful protocol)

−→ linkable according to our previous definition (specific readers).

k
Tag

k
Reader

k ′
Reader

new n
〈n, h(n, k)〉

ok

〈n, h(n, k)〉 〈n, h(n, k)〉

ok error

19

Basic Hash protocol

−→ with a generic reader, no linkability attack.

k
Tag

k, k ′
Reader + Database

k, k ′
Reader + Database

new n
〈n, h(n, k)〉

ok

〈n, h(n, k)〉 〈n, h(n, k)〉

ok ok

Keypoint #2: The way the reader is modelled is important. 20

Modelling unlinkability for stateful protocols (3rd attempt)

−→ definition proposed in [Baelde, D., Moreau, CSF’20]

We consider a generic reader having an access to a database DB

!R | (! new k; insert DB(k); !T(k))
≈t

!R | (! new k; insert DB(k); T(k))

Basic Hash Example

• R = in(c, y); get zk ∈ DB suchthat h(proj1(y), zk) = proj2(y)
in out(c, ok)
else out(c, ko).

−→ Modelling tables in ProVerif (or Tamarin) is not an issue.

21

Modelling unlinkability for stateful protocols (3rd attempt)

−→ definition proposed in [Baelde, D., Moreau, CSF’20]

We consider a generic reader having an access to a database DB

!R | (! new k; insert DB(k); !T(k))
≈t

!R | (! new k; insert DB(k); T(k))

Basic Hash Example

• R = in(c, y); get zk ∈ DB suchthat h(proj1(y), zk) = proj2(y)
in out(c, ok)
else out(c, ko).

−→ Modelling tables in ProVerif (or Tamarin) is not an issue.

21

Part II

How can we establish unlinkability?

22

Exsiting tools able to establish trace equivalence

The problem is undecidable in general.

Approach 1: Limiting the number of sessions

• the problem becomes decidable (under some assumptions);
• decision procedures and tools have been developed, e.g.

Deepsec, Spec, Sat-Equiv, . . .

Approach 2: Trying to solve the general case

• ProVerif: over-approximations are performed, termination is
not guaranteed [Blanchet et al., 2005]

• Tamarin: an interactive tool [Basin et al., 2015]

−→ they are based on diff-equivalence (too strong)

23

Exsiting tools able to establish trace equivalence

The problem is undecidable in general.

Approach 1: Limiting the number of sessions

• the problem becomes decidable (under some assumptions);
• decision procedures and tools have been developed, e.g.

Deepsec, Spec, Sat-Equiv, . . .

Approach 2: Trying to solve the general case

• ProVerif: over-approximations are performed, termination is
not guaranteed [Blanchet et al., 2005]

• Tamarin: an interactive tool [Basin et al., 2015]

−→ they are based on diff-equivalence (too strong)

23

Exsiting tools able to establish trace equivalence

The problem is undecidable in general.

Approach 1: Limiting the number of sessions

• the problem becomes decidable (under some assumptions);
• decision procedures and tools have been developed, e.g.

Deepsec, Spec, Sat-Equiv, . . .

Approach 2: Trying to solve the general case

• ProVerif: over-approximations are performed, termination is
not guaranteed [Blanchet et al., 2005]

• Tamarin: an interactive tool [Basin et al., 2015]

−→ they are based on diff-equivalence (too strong)

23

Diff-equivalence

How does it work (or not)?

• form a bi-process B using the operator diff[ML, MR];
• both sides of the bi-process B have to evolve simulatenously

(+ static equivalence) to be declared in diff-equivalence

−→ In such a case, we have that fst(B) ≈t snd(B).

Formally, the semantics is given by a labelled transition system
over bi-configurations (P; Φ) where messages and computations
may contain the diff operator.

24

Diff-equivalence

How does it work (or not)?

• form a bi-process B using the operator diff[ML, MR];
• both sides of the bi-process B have to evolve simulatenously

(+ static equivalence) to be declared in diff-equivalence

−→ In such a case, we have that fst(B) ≈t snd(B).

Formally, the semantics is given by a labelled transition system
over bi-configurations (P; Φ) where messages and computations
may contain the diff operator.

Example 1: out(a) | out(b) ?≈ out(b) | out(a)

−→ B = out(diff[a, b]) | out(diff[b, a]) (* not in diff-equivalence *)

24

Diff-equivalence

How does it work (or not)?

• form a bi-process B using the operator diff[ML, MR];
• both sides of the bi-process B have to evolve simulatenously

(+ static equivalence) to be declared in diff-equivalence

−→ In such a case, we have that fst(B) ≈t snd(B).

Formally, the semantics is given by a labelled transition system
over bi-configurations (P; Φ) where messages and computations
may contain the diff operator.

Example 2

B = insert DB(diff[a, b]); insert DB(diff[b, a]);
get x suchthat x = a then out(c, ok) else out(c, ko)

(* not in diff-equivalence *)
24

Diff-equivalence does not hold on Basic Hash

B = !R | (! new k; !new kk; insert DB(diff[k, kk]);T(diff[k, kk])

Let’s consider a scenario with:
• 1 reader;
• 2 tags: T (diff[k, kk1]),

and T (diff[k, kk2]).

DB left right
line 1 k kk1

line 2 k kk2

1. The tag outputs w1 = 〈n1, h(n1, diff[k, kk1])〉;
2. The reader R will diverge on this input:

R = in(c, y);
get DB(zk) st. eq(h(proj1(y), zk), proj2(y)) in out(c, ok) else out(c, ko).

−→ Proverif returns cannot be proved.

25

Diff-equivalence does not hold on Basic Hash

B = !R | (! new k; !new kk; insert DB(diff[k, kk]);T(diff[k, kk])

Let’s consider a scenario with:
• 1 reader;
• 2 tags: T (diff[k, kk1]),

and T (diff[k, kk2]).

DB left right
line 1 k kk1

line 2 k kk2

1. The tag outputs w1 = 〈n1, h(n1, diff[k, kk1])〉;
2. The reader R will diverge on this input:

R = in(c, y);
get DB(zk) st. eq(h(proj1(y), zk), proj2(y)) in out(c, ok) else out(c, ko).

−→ Proverif returns cannot be proved.

25

Diff-equivalence does not hold on Basic Hash

B = !R | (! new k; !new kk; insert DB(diff[k, kk]);T(diff[k, kk])

Let’s consider a scenario with:
• 1 reader;
• 2 tags: T (diff[k, kk1]),

and T (diff[k, kk2]).

DB left right
line 1 k kk1

line 2 k kk2

1. The tag outputs w1 = 〈n1, h(n1, diff[k, kk1])〉;
2. The reader R will diverge on this input:

R = in(c, y);
get DB(zk) st. eq(h(proj1(y), zk), proj2(y)) in out(c, ok) else out(c, ko).

−→ Proverif returns cannot be proved.

25

Our result for stateless 2-party protocols

[Hirschi, Baelde, D.; S&P, 2016, JCS’19]

Theorem
If a protocol ensures both well-authentication and frame opacity
then it ensures unlinkability, i.e.:

! new k;
(

! R(k) | ! T(k)
)
≈t ! new k;

(
R(k) | T(k)

)

−→ These 2 conditions are easier to check by existing tools

26

Intuition behind the sufficient conditions

Well-Authentication

• Goal = avoid leaks through outcomes of conditionals.
• "Whenever a conditional is positively evaluated, the agents

involved are having so far an honest interaction."

−→ This is a reachability property.

Frame Opacity

• Goal = avoid leaks through relations over messages.
• "Any reachable frame must be statically equivalent to an

idealised frame that only depends on data already observed
during the execution."

−→ This can be verified with (an extension of) diff-equivalence.

27

Intuition behind the sufficient conditions

Well-Authentication

• Goal = avoid leaks through outcomes of conditionals.
• "Whenever a conditional is positively evaluated, the agents

involved are having so far an honest interaction."

−→ This is a reachability property.

Frame Opacity

• Goal = avoid leaks through relations over messages.
• "Any reachable frame must be statically equivalent to an

idealised frame that only depends on data already observed
during the execution."

−→ This can be verified with (an extension of) diff-equivalence.
27

Summary of our case studies using ProVerif

Protocol WA FO unlinkability
Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) 7 attack
Fixed LAK 3 3 safe
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (faillible dec) 7 attack
PACE (as in [Bender et al, 09]) 7 attack
PACE 7 attack
PACE with tags 3 3 safe
DAA sign 3 3 safe
DAA join 3 3 safe
abcdh (irma) 3 3 safe

28

Our result for stateful 2-party protocols

[Baelde, D., Moreau, CSF’20]
Theorem
If a protocol ensures well-authentication, frame opacity and no
desynchronisation then it ensures unlinkability, i.e.:

!R | (! new k; insert DB(k); !T(k))
≈t !R | (! new k; insert DB(k); T(k))

No desynchronisation

• Goal = avoid leaks through desynchronisations between agents.

• "An honest interaction between a tag and a reader cannot fail."

−→ This is also a reachability property! (But a little more tricky...)
29

Summary of our case studies using Tamarin

Protocol WA FO ND unlinkability
Basic Hash 3 3 3 safe
Hash Lock 3 3 3 safe
Feldhofer 3 3 3 safe
OSK v1 3 7 attack
OSK v2 3 3 3 safe
LAK (pairs) 3 7 attack
LAK (pairs, fixed) 3 3 3 safe
LAK (pairs, no update) 3 3 3 safe
5G-AKA (simplified) 3 3 3 safe

−→ simple conditions in the theory but not so easily checkable in
practice

30

A recent result for stateful 2-party protocols

[Baelde, Debant, D., CSF’23]

Main Goal

Transform a ProVerif modelM into another modelM′ such that:

• diff-equivalence onM′ ⇒ trace equivalence onM; and
• diff-equivalence is verified with ProVerif onM′.

Our transformation:

1. duplicate the get instructions inM to dissociate the two parts
of the bi-process; (possible using the allowDiffPatterns
option)

2. add some axioms (proved correct manually) to help ProVerif
to reason on our new model.

31

Basic Hash example

let T(k) = new nT; out(c,(nT,h(nT,k))).

let R = in(c,y);
get db(k) suchthat snd(y) = h(fst(y),k) in out(c,ok)

else out(c,ko).

process
(! new k; ! new kk; insert db(diff[k,kk]);

phase 1; T(diff[k,kk]))
| (phase 1; ! R)

32

Step 1: Basic Hash example

−→ duplicate the get instructions to dissociate the two parts of
the bi-process.

let R =
in(c,diff[y1L,y1R]);
get db(diff[kL,wR]) suchthat snd(y1L) = h(fst(y1L),kL) in

(get db(diff[wL,kR]) suchthat snd(y1R) = h(fst(y1R),kR) in
out(c,diff[ok,ok])

else
out(c,diff[ok,ko]))

else
(get db(diff[wL,kR]) suchthat snd(y1R) = h(fst(y1R),kR) in

out(c,diff[ko,ok])
else

out(cR,diff[ko,ko])).

33

Step 2: Refining the analysis in the failure branches

We illustrate this on a very simple example.
Before, . . .

B = insert tbl(ok);
get tbl(x) st. true in out(c, ok)

else out(c, diff[okL, okR])

. . . and ProVerif can not proved equivalence (whereas it holds).

. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ Now, Proverif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(xL)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xL) 6= h(proj1(xL), yL)
event(FailR(xR)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xR) 6= h(proj1(xR), yR)

34

Step 2: Refining the analysis in the failure branches

We illustrate this on a very simple example.
After, . . .

B = event(Inserted(ok)); insert tbl(ok);
get tbl(x) st. true in out(c, ok)

else event(Fail());out(c, diff[okL, okR])
. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ Now, Proverif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(xL)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xL) 6= h(proj1(xL), yL)
event(FailR(xR)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xR) 6= h(proj1(xR), yR)

34

Step 2: Refining the analysis in the failure branches

We illustrate this on a very simple example.
After, . . .

B = event(Inserted(ok)); insert tbl(ok);
get tbl(x) st. true in out(c, ok)

else event(Fail());out(c, diff[okL, okR])
. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ Now, Proverif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(xL)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xL) 6= h(proj1(xL), yL)
event(FailR(xR)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xR) 6= h(proj1(xR), yR)

34

Case studies

Implementation
The two steps of the transformation have been implemented
(≈ 2k Ocaml LoC).

Case studies
Basic Hash, Hash-Lock, Feldhofer, a variant of
LAK, OSK.

−→ ProVerif is able to conclude on all these examples !

(during a break if someone is interested)

35

Case studies

Implementation
The two steps of the transformation have been implemented
(≈ 2k Ocaml LoC).

Case studies
Basic Hash, Hash-Lock, Feldhofer, a variant of
LAK, OSK.

−→ ProVerif is able to conclude on all these examples !

(during a break if someone is interested)
35

Conclusion

36

Summary

• modelling unlinkability is rather subtle:
−→ importance of modelling the reader, and how it is
modelled;
−→ states can introduce observables, especially in the case of
a desynchronisation.

• verifying unlinkability properties is not an easy task but a lot
of progress has been done.

Going a step further:

• stateful protocols (with updates) using ProVerif/GSVerif;
• from diff-equivalence to session equivalence;
• A nice way to encore unlinkability in Tamarin is to rely on

(asymmetric) restrictions but currently the tool does not
support them.

37

Summary

• modelling unlinkability is rather subtle:
−→ importance of modelling the reader, and how it is
modelled;
−→ states can introduce observables, especially in the case of
a desynchronisation.

• verifying unlinkability properties is not an easy task but a lot
of progress has been done.

Going a step further:

• stateful protocols (with updates) using ProVerif/GSVerif;
• from diff-equivalence to session equivalence;
• A nice way to encore unlinkability in Tamarin is to rely on

(asymmetric) restrictions but currently the tool does not
support them. 37

Advertisement

PEPR Cybersecurity (2022-2028)
Partners: 5 teams in France (Nancy, Paris, Rennes,
Sophia) https://pepr-cyber-svp.cnrs.fr

Job offers:
• PhDs
• Post-docs
• Engineers

−→ contact me: stephanie.delaune@irisa.fr
38

https://pepr-cyber-svp.cnrs.fr

