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Cryptographic protocols everywhere !

• small programs designed to secure
communication (e.g. secrecy, authentication,
anonymity, . . . )

• use cryptographic primitives (e.g. encryption,
signature, . . . . . . )

It becomes more and more important to protect our privacy.
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Electronic passport

An e-passport is a passport with an RFID tag embedded in it.

The RFID tag stores:
• the information printed on your passport;
• a JPEG copy of your picture;
• . . .

The Basic Access Control (BAC) protocol is a key establishment
protocol that has been designed to protect our personnal data, and
to ensure unlinkability.

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]
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How cryptographic protocols can be attacked?

Logical attacks

• can be mounted even assuming perfect
cryptography, e.g. replay attack, man-in-the
middle attack, . . .

• subtle and hard to detect by “eyeballing” the
protocol

Example: A traceability attack on the BAC protocol

privacy
issue

The register - Jan. 2010
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How to verify the absence of logical flaws?

• dissect the protocol and test their
resilience against well-known attacks;
−→ this is not sufficient !

• perform a manual security analysis
−→ this is error-prone !

Our approach
formal symbolic verification using automatic/interactive tools
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Formal (symbolic) verification in a nutshell

Two main tasks:

1. Modelling: protocols, security properties, and the attacker;
2. Verifying: designing verification algorithms and tools.

−→ this talk: a focus on unlinkability
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Some success stories (mostly related to reachability properties)

ProVerif

[Blanchet, 01] [Meier et al., 13]

Sapic+

[Cheval et al., 22]

———
Verified models and reference implementations for
TLS 1.3 [Bhargavan et al., 17]

A formal security analysis of the EMV Standard
using Tamarin (Break, Fix, and Verify)

[Basin et al., 2020]

A comprehensive, formal and automated analysis
of the EDHOC protocol [Jacomme et al, 23]
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What about unlinkability (in the symbolic setting)?

Actually, existing tools like ProVerif and Tamarin are not suitable
to analyse unlinkability, and therefore few formal proofs exist in the
unbounded setting.

• [Chatzikokolakis et al., 2010]: sufficient conditions checkable
using ProVerif that allows one to establish unlinkability for a
simple class of protocols (single-step protocols).

−→ their notion of unlinkability is rather weak

• [Arapinis et al., 2010]: a formal definition of unlinkability, and
a manual proof of unlinkability for a fixed version of the
e-passport protocol. −→ this result is wrong

• [Bhargavan et al., 2022]: a symbolic analysis of privacy for
TLS 1.3 with Encrypted Client Hello

−→ several encodings tricks are used.
7



Part I

Modelling: protocols, the attacker,
and unlinkability
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Running example: Basic Hash protocol

• k is a long-term secret
key shared between the
tag and the reader;

• each tag has its own
key k.

9



Protocols as processes

−→ a programming language with constructs for concurrency and
communication (applied-pi calculus [Abadi & Fournet, 01])

P, Q := 0 null process
| in(c, x); P input
| out(c, M); P output
| new n; P name generation
| if M = N then P else Q conditional
| !P replication
| (P | Q) parallel composition
| . . .

10



Messages/Computations as terms

Terms are built over a set of names N (private), and function
symbols Σ (public) equipped with an equational theory E.

Example:

Σ = {senc, sdec} with E = {sdec(senc(x , y), y) = x}.

Let Φ = {w1 7→ senc(s, k);w2 7→ k}. R = sdec(w1,w2) is a recipe
to compute s. Indeed, we have that RΦ =E s.
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Going back to Basic Hash

Mesages/Computations as terms

• Σ = {h, 〈 〉, proj1, proj2};
• E = {proj1(〈x1, x2〉) = x1, proj2(〈x1, x2〉) = x2}.

Protocol as a process

• T(k) = new n; out(c, 〈n, h(n, k)〉).
• R(k) = in(c, y); if h(proj1(y), k) = proj2(y)

then out(c, ok)
else out(c, ko).

Then, the whole system can be written as follows:

! new k;
(

! R(k) | ! T(k)
)

12



Semantics (some selected rules)

Labelled transition system over configurations:

(P ; Φ)

multiset of processes frame = knowledge of the attacker

————————

Out ({out(c, M); P} ] P; Φ) out(c,wi )−−−−−−→ ({P} ] P; Φ ∪ {wi 7→ M})
with i = |Φ|

Then ({if M1 = M2 then P else Q} ] P; Φ) τ−→ ({P} ] P; Φ)
when M1 =E M2

In ({in(c, x); P} ] P; Φ) in(c,R)−−−−→ ({P{x 7→ RΦ}} ] P; Φ)
. . .
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Trace equivalence

Trace equivalence between configurations: K ≈t K ′.
For any execution trace K tr−→ (P; Φ) there exists an execution
K ′ tr−→ (P ′; Φ′) such that Φ ∼s Φ′ (and conversely)

Static equivalence between frames: Φ ∼s Φ′.
Any test that holds in Φ also holds in Φ′ (and conversely).

Example:
{w1 7→ k;w2 7→ 〈n, h(n, k)〉} 6∼s {w1 7→ k;w2 7→ 〈n′, h(n′, k ′)〉}

−→ with the test h(proj1(w2), w1) ?= proj2(w2).

{w1 7→ 〈n1, h(n1, k)〉; w2 7→ 〈n2, h(n2, k)〉}
∼s

{w1 7→ 〈n′
1, h(n′

1, k)〉; w2 7→ 〈n′
2, h(n′

2, k ′)〉}
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Modelling unlinkability using trace equivalence

Unlinkability aims to ensure that a user may make multiple uses
of a service or resource without others being able to link these
uses together. [ISO/IEC standard 15408]

−→ the real system should be equivalent to the ideal one (from
the point of view of the attacker).

. . .

?≈t
. . .

many sessions
for each identity

only one session
for each identity
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Modelling unlinkability (1th attempt)

For single-step protocols, we may consider the following
equivalence:

! new k; ! T (k) ≈t ! new k; T (k)

−→ This approach was used in [Chatzikokolakis et al., 2010] to
establish unlinkability for BH and OSK protocols.

Example: OSK protocol

• h and g are two hash
functions;

• k is updated - with h(k) -
after a successful
execution on both sides.
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Attack on the OSK protocol

Tags are proved unlinkable in [Chatzikokolakis et al., 2010] but
there is an attack !

kT ← k
Tag

kR ← k
Reader

g(k)

kT ← h(k) g(h(k))

kT ← h2(k) kR ← h2(k); ok

g(k)

error

Keypoint #1: modelling the reader is important. 17



Modelling unlinkability (2th attempt)

−→ definition first proposed by [Arapinis et al., CSF’10] (but for
another notion of equivalence)

! new k;
(

! R(k) | ! T(k)
)
≈t ! new k;

(
R(k) | T(k)

)

This definition is:

• suitable to analyse e.g. e-passport protocols, and many other
stateless protocols;

• the one we used in our work [Hirschi, Baelde & D., SP’16 &
JCS’19].

18



Going back to Basic Hash protocol (a stateful protocol)

−→ linkable according to our previous definition (specific readers).

k
Tag

k
Reader

k ′
Reader

new n
〈n, h(n, k)〉

ok

〈n, h(n, k)〉 〈n, h(n, k)〉

ok error

19



Basic Hash protocol

−→ with a generic reader, no linkability attack.

k
Tag

k, k ′
Reader + Database

k, k ′
Reader + Database

new n
〈n, h(n, k)〉

ok

〈n, h(n, k)〉 〈n, h(n, k)〉

ok ok

Keypoint #2: The way the reader is modelled is important. 20



Modelling unlinkability for stateful protocols (3rd attempt)

−→ definition proposed in [Baelde, D., Moreau, CSF’20]

We consider a generic reader having an access to a database DB

!R | ( ! new k; insert DB(k); !T(k))
≈t

!R | ( ! new k; insert DB(k); T(k))

Basic Hash Example

• R = in(c, y); get zk ∈ DB suchthat h(proj1(y), zk) = proj2(y)
in out(c, ok)
else out(c, ko).

−→ Modelling tables in ProVerif (or Tamarin) is not an issue.
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Part II

How can we establish unlinkability?

22



Exsiting tools able to establish trace equivalence

The problem is undecidable in general.

Approach 1: Limiting the number of sessions

• the problem becomes decidable (under some assumptions);
• decision procedures and tools have been developed, e.g.

Deepsec, Spec, Sat-Equiv, . . .

Approach 2: Trying to solve the general case

• ProVerif: over-approximations are performed, termination is
not guaranteed [Blanchet et al., 2005]

• Tamarin: an interactive tool [Basin et al., 2015]

−→ they are based on diff-equivalence (too strong)
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Diff-equivalence

How does it work (or not)?

• form a bi-process B using the operator diff[ML, MR];
• both sides of the bi-process B have to evolve simulatenously

(+ static equivalence) to be declared in diff-equivalence

−→ In such a case, we have that fst(B) ≈t snd(B).

Formally, the semantics is given by a labelled transition system
over bi-configurations (P; Φ) where messages and computations
may contain the diff operator.

24
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−→ In such a case, we have that fst(B) ≈t snd(B).

Formally, the semantics is given by a labelled transition system
over bi-configurations (P; Φ) where messages and computations
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Example 2

B = insert DB(diff[a, b]); insert DB(diff[b, a]);
get x suchthat x = a then out(c, ok) else out(c, ko)

(* not in diff-equivalence *)
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Diff-equivalence does not hold on Basic Hash

B = !R | (! new k; !new kk; insert DB(diff[k, kk]);T(diff[k, kk])

Let’s consider a scenario with:
• 1 reader;
• 2 tags: T (diff[k, kk1]),

and T (diff[k, kk2]).

DB left right
line 1 k kk1

line 2 k kk2

1. The tag outputs w1 = 〈n1, h(n1, diff[k, kk1])〉;
2. The reader R will diverge on this input:

R = in(c, y);
get DB(zk) st. eq(h(proj1(y), zk), proj2(y)) in out(c, ok) else out(c, ko).

−→ Proverif returns cannot be proved.
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Our result for stateless 2-party protocols

[Hirschi, Baelde, D.; S&P, 2016, JCS’19]

Theorem
If a protocol ensures both well-authentication and frame opacity
then it ensures unlinkability, i.e.:

! new k;
(

! R(k) | ! T(k)
)
≈t ! new k;

(
R(k) | T(k)

)

−→ These 2 conditions are easier to check by existing tools

26



Intuition behind the sufficient conditions

Well-Authentication

• Goal = avoid leaks through outcomes of conditionals.
• "Whenever a conditional is positively evaluated, the agents

involved are having so far an honest interaction."

−→ This is a reachability property.

Frame Opacity

• Goal = avoid leaks through relations over messages.
• "Any reachable frame must be statically equivalent to an

idealised frame that only depends on data already observed
during the execution."

−→ This can be verified with (an extension of) diff-equivalence.

27
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Summary of our case studies using ProVerif

Protocol WA FO unlinkability
Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) 7 attack
Fixed LAK 3 3 safe
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (faillible dec) 7 attack
PACE (as in [Bender et al, 09]) 7 attack
PACE 7 attack
PACE with tags 3 3 safe
DAA sign 3 3 safe
DAA join 3 3 safe
abcdh (irma) 3 3 safe

28



Our result for stateful 2-party protocols

[Baelde, D., Moreau, CSF’20]
Theorem
If a protocol ensures well-authentication, frame opacity and no
desynchronisation then it ensures unlinkability, i.e.:

!R | ( ! new k; insert DB(k); !T(k))
≈t !R | ( ! new k; insert DB(k); T(k))

No desynchronisation

• Goal = avoid leaks through desynchronisations between agents.

• "An honest interaction between a tag and a reader cannot fail."

−→ This is also a reachability property! (But a little more tricky...)
29



Summary of our case studies using Tamarin

Protocol WA FO ND unlinkability
Basic Hash 3 3 3 safe
Hash Lock 3 3 3 safe
Feldhofer 3 3 3 safe
OSK v1 3 7 attack
OSK v2 3 3 3 safe
LAK (pairs) 3 7 attack
LAK (pairs, fixed) 3 3 3 safe
LAK (pairs, no update) 3 3 3 safe
5G-AKA (simplified) 3 3 3 safe

−→ simple conditions in the theory but not so easily checkable in
practice
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A recent result for stateful 2-party protocols

[Baelde, Debant, D., CSF’23]

Main Goal

Transform a ProVerif modelM into another modelM′ such that:

• diff-equivalence onM′ ⇒ trace equivalence onM; and
• diff-equivalence is verified with ProVerif onM′.

Our transformation:

1. duplicate the get instructions inM to dissociate the two parts
of the bi-process; (possible using the allowDiffPatterns
option)

2. add some axioms (proved correct manually) to help ProVerif
to reason on our new model.
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Basic Hash example

let T(k) = new nT; out(c,(nT,h(nT,k))).

let R = in(c,y);
get db(k) suchthat snd(y) = h(fst(y),k) in out(c,ok)

else out(c,ko).

process
(! new k; ! new kk; insert db(diff[k,kk]);

phase 1; T(diff[k,kk]))
| (phase 1; ! R)

32



Step 1: Basic Hash example

−→ duplicate the get instructions to dissociate the two parts of
the bi-process.

let R =
in(c,diff[y1L,y1R]);
get db(diff[kL,wR]) suchthat snd(y1L) = h(fst(y1L),kL) in

(get db(diff[wL,kR]) suchthat snd(y1R) = h(fst(y1R),kR) in
out(c,diff[ok,ok])

else
out(c,diff[ok,ko]))

else
(get db(diff[wL,kR]) suchthat snd(y1R) = h(fst(y1R),kR) in

out(c,diff[ko,ok])
else

out(cR,diff[ko,ko])).

33



Step 2: Refining the analysis in the failure branches

We illustrate this on a very simple example.
Before, . . .

B = insert tbl(ok);
get tbl(x) st. true in out(c, ok)

else out(c, diff[okL, okR])

. . . and ProVerif can not proved equivalence (whereas it holds).

. . . together with the following axiom:

event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ Now, Proverif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(xL)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xL) 6= h(proj1(xL), yL)
event(FailR(xR)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xR) 6= h(proj1(xR), yR)
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event(Fail()) ∧ event(Inserted(diff[yL, yR]))⇒ false.

−→ Now, Proverif is able to conclude that equivalence holds.

Going back to the Basic Hash protocol
event(FailL(xL)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xL) 6= h(proj1(xL), yL)
event(FailR(xR)) ∧ event(Inserted(diff[yL, yR])) ⇒ proj2(xR) 6= h(proj1(xR), yR)
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Case studies

Implementation
The two steps of the transformation have been implemented
(≈ 2k Ocaml LoC).

Case studies
Basic Hash, Hash-Lock, Feldhofer, a variant of
LAK, OSK.

−→ ProVerif is able to conclude on all these examples !

(during a break if someone is interested)
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Conclusion
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Summary

• modelling unlinkability is rather subtle:
−→ importance of modelling the reader, and how it is
modelled;
−→ states can introduce observables, especially in the case of
a desynchronisation.

• verifying unlinkability properties is not an easy task but a lot
of progress has been done.

Going a step further:

• stateful protocols (with updates) using ProVerif/GSVerif;
• from diff-equivalence to session equivalence;
• A nice way to encore unlinkability in Tamarin is to rely on

(asymmetric) restrictions but currently the tool does not
support them.

37



Summary

• modelling unlinkability is rather subtle:
−→ importance of modelling the reader, and how it is
modelled;
−→ states can introduce observables, especially in the case of
a desynchronisation.

• verifying unlinkability properties is not an easy task but a lot
of progress has been done.

Going a step further:

• stateful protocols (with updates) using ProVerif/GSVerif;
• from diff-equivalence to session equivalence;
• A nice way to encore unlinkability in Tamarin is to rely on

(asymmetric) restrictions but currently the tool does not
support them. 37



Advertisement

PEPR Cybersecurity (2022-2028)
Partners: 5 teams in France (Nancy, Paris, Rennes,
Sophia) https://pepr-cyber-svp.cnrs.fr

Job offers:
• PhDs
• Post-docs
• Engineers

−→ contact me: stephanie.delaune@irisa.fr
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