
Unrestricting restrictions in ProVerif
Vincent Cheval

Inria Paris
vincent.cheval@inria.fr

GT FMS
30/03/2023

Collaborations with José Moreira and Mark Ryan, and with Bruno Blanchet

mailto:vincent.cheval@inria.fr

Symbolic (Dolev-Yao) models

The attacker can…

Read / Write

Intercept

But they do not…

Break cryptograhy

Use side channels

Concurrent systems where dishonest parties have
complete control over network communication

but cryptography is idealised

Automated Verification

Proverif TamarinTwo main verifiers

Large class of cryptographic primitives

Reachability and equivalence properties

Unbounded number of sessions

Push-button Lot of guidance

Almost no guidance Less automated

Lemmas
Axioms

Restrictions

Interactive interface

Automated Verification

Proverif TamarinTwo main verifiers

Large class of cryptographic primitives

Reachability and equivalence properties

Unbounded number of sessions

Push-button Lot of guidance

Almost no guidance Less automated

Lemmas
Axioms

Restrictions

Lemmas
Axioms

Restrictions

More guidance
[BCC-S&P22]

More automation
[CDDK-JCS22]

Interactive interface

Lemmas / Axioms / Restrictions

Intermediary property useful to prove the main query

Lemmas

Proved by the tool

Axioms
Similarly to Lemmas but assumed by the tool

Restrictions

Restricts the search space of traces on which to prove the main query

Sometimes useful to avoid heavy encoding

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

Already useful

Basis of GSVerif tool

Instrumental in the verification of TLS-ECH, Voting protocols, ZCash
Add precision to ProVerif
Allow to handle stateful protocols

axiom st:bitstring, x:bitstring, y:bitstring;
 event(precise(st,x)) && event(precise(st,y)) ==> x = y.

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

Already useful

Basis of GSVerif tool

Instrumental in the verification of TLS-ECH, Voting protocols, ZCash
Add precision to ProVerif
Allow to handle stateful protocols

axiom st:bitstring, x:bitstring, y:bitstring;
 event(precise(st,x)) && event(precise(st,y)) ==> x = y.

F1 ∧ … ∧ Fn ⇒ ϕPremise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Lemmas are correspondence queries

∀x1, x2, …, xk . F1 ∧ … ∧ Fn ⇒ ∃y1, …, yℓ . ϕ

Variables in the premises Remaining variables in ϕ

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Does not allow temporal variables

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Does not allow temporal variables

Does not allow disequalities and
inequalities in the premises

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Does not allow disequalities and
inequalities in the premises

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Lemmas / Axioms / Restrictions in ProVerif [BCC22]

F1 ∧ … ∧ Fn ⇒ ϕ

Premise can be any predicate (events,
attacker, mess, table, user-defined)

Disjunctions and conjunction of
events, inequalities, equalities, and

disequalities

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

axiom id:voter, v,v’:vote, i,j:time;
 event(hasVoted(id,v))@i && event(hasVoted(id,v’))@j ==> i = j.

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

lemma i,j:nat;
 event(A(i)) && event(B(j)) && i < j ==> event(C(i,j)).

lemma i,j:nat;
 event(A(i)) && event(B(j)) ==>

i >= j || (i < j && event(C(i,j))).

instead of

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

lemma id:voter, v:vote, i,j:time;
 event(VoteCounted(id,v))@i ==> attacker(v)@j && i > j.

s-event(VoteCounted(id, v)) ∧ H → att(v)

Clause generated when the vote
is revealed by the tally

Removed by application of the
lemma

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

Improve precision

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

Improve precision

Allow to prove properties on complex data structure

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

Improve precision

Allow to prove liveness and accountability properties

Allow to prove properties on complex data structure

Liveness properties [BDKK-EuroSnP17]

Local progress
Processes need to be reduced as far as possible, that is until they wait for a message

Resilient channels

Messages sent on resilient channel must be delivered

External non-determinism
Any process P + Q reduces to R if P or Q reduces to R.

All these properties can be enforced by
"forward" restrictions

Liveness properties [BDKK-EuroS&P17]

External non-determinism
Any process P + Q reduces to R if P or Q reduces to R.

All these properties can be enforced by
"forward" restrictions

P = a; P′

Q = b; Q′

P + Q

event B; (event M; a; event E; P′ ∣ event M; b; event E; Q′)
translated into

restriction
 event(B) ==> event(E);
 event(M)@i && event(M)@j ==> i = j.

Properties on complex data structures [CMR-EuroS&P23]

Merkle trees

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(d3))

h(d3)

digest of the tree

data in the leaves

Proof of presence in O(log(n))

Proof of extension in O(log(n))

Append only structure

Good to model ledgers

Properties on complex data structures [CMR-EuroS&P23]

Merkle trees

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(d3))

h(d3)

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(h(d3), h(d4)) h(d5)

h(h(d3), h(d4))

h(d3) h(d4)

h(h(h(h(d1), h(d2)), h(h(d3), h(d4)), h(d5))

left

right

left

In green, proof of extension between the two trees

Properties on complex data structures [CMR-EuroS&P23]

Defining verification predicates through Horn clauses

(* Proof of presence *)

fun PP(list):proof_of_presence [data].

clauses
 forall x:bitstring;
 verify_pp(PP(nil),x,hash(leaf(x)));
 forall pl:list, x:bitstring, d_left,d_right:digest;
 verify_pp(PP(pl),x,d_left) ->
 verify_pp(PP(cons((left,d_right),pl)),x,hash(node(d_left,d_right)));
 forall pl:list, x:bitstring, d_left,d_right:digest;
 verify_pp(PP(pl),x,d_right) ->
 verify_pp(PP(cons((right,d_left),pl)),x,hash(node(d_left,d_right)))
.

Will often not terminate if these Horn
clauses are given with the protocol

Properties on complex data structures [CMR-EuroS&P23]

Prove the protocol in two phases

Phase 1 Phase 2

Lemmas -> Restrictions

Interface

Define predicate with Horn Clauses

Extract properties on the data structures

Prove them as lemmas with the empty protocol

Predicate given with unspecified semantics

Predicate under specified with restrictions

Prove the protocol

Phase 2 proves the protocol for all
implementations satisfying the interface

Properties on complex data structures [CMR-EuroS&P23]

Extract of the interface

(* Transitivity of proof of extension *)
lemma pe1,pe2,pe3:proof_of_extension, d1,d2,d3:digest;
 verify_pe(pe1,d1,d2) && verify_pe(pe2,d2,d3) ==> verify_pe(pe3,d1,d3)
.

(* Proofs of presence are stable by proofs of extension *)
lemma x:bitstring, pe:proof_of_extension, pp1,pp2:proof_of_presence,
d1,d2:digest;
 verify_pp(pp1,x,d1) && verify_pe(pe,d1,d2) ==> verify_pp(pp2,x,d2)
.

Properties on complex data structures

Useful to model other predicates: is_subterm

(* We do not implement the full subterm semantics but only a sufficient subset. *)

pred is_subterm(bitstring,bitstring).

clauses
 forall x,y:bitstring; is_subterm(x,hash((y,x)));
 forall x,y:bitstring; is_subterm(x,x);
 forall x,y,z:bitstring; is_subterm(x,y) -> is_subterm(x,hash((y,z)))
.

In work with Véronique Cortier and Alexandre Debant on Election Verifiability

lemma x,y:bitstring, uuid:election_id,j1,j2,i1,i2:nat,
h1,h2,ballot1,ballot2:bitstring;
event(Ballot_In_Bulletin_Board(uuid,j1,i1,ballot1,h1)) &&
event(Ballot_In_Bulletin_Board(uuid,j2,i2,ballot2,h2)) && i1 <= i2 ==>
is_subterm(ballot1,h2)

.

Lemmas / Axioms / Restrictions in ProVerif

Does not allow temporal variables

Events in the conclusion do not
restrict traces

Conclusion cannot contain attacker,
mess, table, or user defined predicate

Semantics of restrictions enforce that
events in the conclusion occur before

at least one fact of the premise.

Does not allow disequalities and
inequalities in the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

Improve precision

Allow to prove liveness and accountability properties

Allow to prove properties on complex data structure

Lemmas / Axioms / Restrictions in ProVerif (next release)

Allow temporal variables

Events in the conclusion restrict
traces

Conclusion can contain any predicate

No semantics constraints on the
occurrence order of events in

restrictions.

Allow disequalities and inequalities in
the premises

Allow to be more expressive in the order of events

Allow to be more efficient in the application of the lemma

Avoid non-termination scenarios

Improve precision

Allow to prove liveness and accountability properties

Allow to prove properties on complex data structure

Includes [CMR-EuroS&P23]

Under the hood: any predicate in query conclusion

Translation into Horn clauses Saturation of Horn clausesProcess

Lemmas / Axioms / Restrictions Applied on each Horn clauses

F1 ∧ F2 ⇒ G1 ∧ G2 ∧ G3Lemma

H → CClause

If there is a substitution σ such that F1σ ∧ F2σ ⊆ H then

H → C is replaced by H ∧ G1σ ∧ G2σ ∧ G3σ → C

Verification of query

Under the hood: any predicate in query conclusion

Translation into Horn clauses Saturation of Horn clausesProcess

Lemmas / Axioms / Restrictions Applied on each Horn clauses

F1 ∧ F2 ⇒ G1 ∧ G2 ∧ G3Lemma

H → CClause

If there is a substitution σ such that F1σ ∧ F2σ ⊆ H then

H → C is replaced by H ∧ G1σ ∧ G2σ ∧ G3σ → C

Not always sound !

events
attacker facts

Verification of query

Under the hood: any predicate in query conclusion

Two predicates for events
s-event
m-event

sure-event: occurs only in hypotheses of Horn clauses
may-event: occurs only in conclusions of Horn clauses

Consequence: facts with s-event predicates are never resolved !

Applying a lemma is sound if no added facts can be resolved.

Under the hood: any predicate in query conclusion

Two predicates for events
s-event
m-event

sure-event: occurs only in hypotheses of Horn clauses
may-event: occurs only in conclusions of Horn clauses

Consequence: facts with s-event predicates are never resolved !

Applying a lemma is sound if no added facts can be resolved.

For every predicate, we consider a blocking
predicate that cannot be resolved

Under the hood: any predicate in query conclusion

lemma id:voter, v:vote; event(VoteCounted(id,v)) ==> attacker(v).

b-event(VoteCounted(id, C1)) ∧ H → att(C1)Clause

Under the hood: any predicate in query conclusion

lemma id:voter, v:vote; event(VoteCounted(id,v)) ==> attacker(v).

b-event(VoteCounted(id, C1)) ∧ H → att(C1)Clause

After applying the lemma

b-att(C1) ∧ b-event(VoteCounted(id, C1)) ∧ H → att(C1)

Under the hood: any predicate in query conclusion

lemma id:voter, v:vote; event(VoteCounted(id,v)) ==> attacker(v).

b-event(VoteCounted(id, C1)) ∧ H → att(C1)Clause

After applying the lemma

b-att(C1) ∧ b-event(VoteCounted(id, C1)) ∧ H → att(C1)

Transformation rules are adapted to take blocking predicate into account

The clause is removed by tautology

Under the hood: forward restriction

query event(Send) ==> event(Goal). False

process event Send | (event Goal; event Received).

Under the hood: forward restriction

process event Send | (event Goal; event Received).

query event(Send) ==> event(Goal). True

restriction event(Send) ==> event(Received).

But ProVerif can’t prove it… Why?

Under the hood: forward restriction

process event Send | (event Goal; event Received).

query event(Send) ==> event(Goal). True

restriction event(Send) ==> event(Received).

But ProVerif can’t prove it… Why?

→ event(Send)

Clauses generated:

b-event(Goal) → event(Received)

→ event(Goal)

Under the hood: forward restriction

process event Send | (event Goal; event Received).

query event(Send) ==> event(Goal). True

restriction event(Send) ==> event(Received).

But ProVerif can’t prove it… Why?

b-event(Received)

Clauses after saturation:

b-event(Goal) → event(Received)

→ event(Goal)

→ event(Send) Hypothesis of the clause cannot show the
execution of event Goal.

Under the hood: forward restriction
Idea: Two rounds of saturation

Translation into Horn clauses

1st Saturation of Horn clauses

Process

Unblock events in hypothesis
occurring in restrictions

restriction event(Send) ==> event(Received).

b-event(Received) → event(Send)

becomes

b-event(Received) → event(Send)∧ event(Received)

2nd Saturation of Horn clausesb-event(Received) ∧ b-event(Goal) → event(Send)

b-event(Goal) → event(Received)

→ event(Goal) Verification of the query

Timetable of ProVerif next releases

GT MFS 2023Now
2-3 months Next release with unrestricted lemmas/axioms/restrictions

end of 2023 Memory optimisation (first prototype already developed)

mid 2024 ProVerif with DH, XOR, AC (early work with Caroline Fontaine)

?? Certificate generator and machine checked verifier

Auto-detection of cycles with noselect suggestions

GSVerif integration

MultiCore ProVerif

Trace equivalence, simulation and bisimulation

Algorithm optimisations (subsumption, redundancy, lemma applications, …)

Interns wanted!

Symmetry-based query verification

Auto-detection of secrecy assumptions

https://gitlab.inria.fr/bblanche/proverif
Available at

https://bblanche.gitlabpages.inria.fr/proverif/

